Натуральное число определение. Ненатуральные числа

1.1.Определение

Числа, применяемые людьми при счете, называются натуральными (например, один, два, три,…, сто, сто один,…, три тысячи двести двадцать один,…) Для записи натуральных чисел используют специальные знаки (символы), называемые цифрами .

В наше время принята десятичная система записи чисел . В десятичной системе (или способе) записи чисел используются арабские цифры. Это десять различных символов-цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 .

Наименьшее натуральное число - это число один, оно записывается при помощи десятичной цифры - 1. Следующее натуральное число получается из предыдущего (кроме единицы) добавлением 1 (единицы). Такое добавление можно делать много раз (бесконечное число раз). Это означает, что нет наибольшего натурального числа. Поэтому говорят, что ряд натуральных чисел неограничен или бесконечен, так как он не имеет конца. Натуральные числа записывают при помощи десятичных цифр.

1.2. Число «ноль»

Для обозначения отсутствия чего-либо используют число "ноль " или "нуль ". Его записывают при помощи цифры 0 (ноль). Например, в коробке все шары красные. Сколько среди них зеленых? - Ответ: ноль. Значит, зеленых шаров в коробке нет! Число 0 может означать, что что-то закончилось. Например, у Маши было 3 яблока. Двумя она поделилась с друзьями, одно съела сама. Значит, у неё осталось 0 (ноль) яблок, т.е. ни одного не осталось. Число 0 может означать, что что-то не случилось. Например, хоккейный матч Сборная России - Сборная Канады закончился со счетом 3:0 (читаем "три - ноль") в пользу сборной России. Значит, сборная России забила 3 гола, а сборная Канады 0 голов, не смогла забить ни одного гола. Надо помнить, что число ноль не является натуральным.

1.3. Запись натуральных чисел

В десятичном способе записи натурального числа каждая цифра может означать различные числа. Это зависит от места этой цифры в записи числа. Определённое место в записи натурального числа называется позицией. Поэтому десятичная система записи чисел называется позиционной. Рассмотрим десятичную запись 7777 числа семь тысяч семьсот семьдесят семь. В этой записи семь тысяч, семь сотен, семь десятков и семь единиц.

Каждое из мест (позиций) в десятичной записи числа называется разрядом . Каждые три разряда объединены в класс. Это объединение производится справа налево (с конца записи числа). Различные разряды и классы имеют собственные названия. Ряд натуральных чисел неограничен. Поэтому количество разрядов и классов также не ограничено (бесконечно ). Рассмотрим названия разрядов и классов на примере числа с десятичной записью

38 001 102 987 000 128 425:

Классы и разряды

квинтиллионы

сотни квинтиллионов

десятки квинтиллионов

квинтиллионы

квадриллионы

сотни квадриллионов

десятки квадриллионов

квадриллионы

триллионы

сотни триллионов

десятки триллионов

триллионы

миллиарды

сотни миллиардов

десятки миллиардов

миллиарды

миллионы

сотни миллионов

десятки миллионов

миллионы

сотни тысяч

десятки тысяч

Итак, классы, начиная с младшего, имеют названия: единицы, тысячи, миллионы, миллиарды, триллионы, квадриллионы, квинтиллионы.

1.4. Разрядные единицы

Каждый из классов в записи натуральных чисел состоит из трёх разрядов. Каждый разряд имеет разрядные единицы . Следующие числа называются разрядными единицами:

1 - разрядная единица разряда единиц,

10 - разрядная единица разряда десятков,

100 - разрядная единица разряда сотен,

1 000 - разрядная единица разряда тысяч,

10 000 - разрядная единица разряда десятков тысяч,

100 000 - разрядная единица разряда сотен тысяч,

1 000 000 - разрядная единица разряда миллионов, и т. д.

Цифра в каком-либо из разрядов показывает количество единиц данного разряда. Так, цифра 9, в разряде сотен миллиардов, означает, что в состав числа 38 001 102 987 000 128 425 входит девять миллиардов (т.е. 9 раз по 1 000 000 000 или 9 разрядных единиц разряда миллиардов). Пустой разряд сотен квинтиллионов означает, что в данном числе отсутствуют сотни квинтиллионов или их количество равно нулю. При этом число 38 001 102 987 000 128 425 можно записать так: 038 001 102 987 000 128 425.

Можно записать иначе: 000 038 001 102 987 000 128 425. Нули в начале числа указывают на пустые старшие разряды. Обычно их не пишут в отличие от нулей внутри десятичной записи, которыми обязательно отмечают пустые разряды. Так, три нуля в классе миллионов означает, что пусты разряды сотен миллионов, десятков миллионов и единиц миллионов.

1.5. Сокращения в записи чисел

При записи натуральных чисел используются сокращения. Приведём примеры:

1 000 = 1 тыс. (одна тысяча)

23 000 000 = 23 млн. (двадцать три миллиона)

5 000 000 000 = 5 млрд. (пять миллиардов)

203 000 000 000 000 = 203 трлн. (двести три триллиона)

107 000 000 000 000 000 = 107 квдр. (сто семь квадриллионов)

1 000 000 000 000 000 000 = 1 квнт. (один квинтиллион)

Блок 1.1. Словарь

Составьте словарь новых терминов и определений из §1. Для этого в пустые клетки впишите слова из списка терминов, приведенного ниже. В таблице (в конце блока) укажите для каждого определения номер термина из списка.

Блок 1.2. Самоподготовка

В мире больших чисел

Экономика .

  1. Бюджет России на следующий год составит: 6328251684128 рублей.
  2. На этот год запланировано расходов: 5124983252134 рублей.
  3. Доходы страны превысили расходы на 1203268431094 рублей.

Вопросы и задания

  1. Прочитайте все три указанных числа
  2. Запишите цифры в классе миллионов каждого из трех чисел

  1. К какому разделу в каждом из чисел относится цифра, стоящая на седьмой позиции от конца записи чисел?
  2. Число каких разрядных единиц показывает цифра 2 в записи первого числа?... в записях второго и третьего числа?
  3. Назовите разрядную единицу для восьмой позиции от конца в записи трех чисел.

География (длина)

  1. Экваториальный радиус Земли: 6378245 м
  2. Длина окружности экватора: 40075696 м
  3. Наибольшая глубина мирового океана (Марианская впадина в Тихом океане) 11500 м

Вопросы и задания

  1. Переведите все три величины в сантиметры и прочитайте полученные числа.
  2. Для первого числа (в см) запишите цифры, стоящие разделах:

сотни тысяч _______

десятки миллионов _______

тысячи _______

миллиарды _______

сотни миллионов _______

  1. Для второго числа (в см) запишите разрядные единицы, соответствующие цифрам 4, 7, 5, 9 в записи числа

  1. Переведите третью величину в миллиметры, прочитайте полученное число.
  2. Для всех позиций в записи третьего числа (в мм) укажите в таблице разряды и разрядные единицы:

География (площадь)

  1. Площадь всей поверхности Земли составляет 510083 тысяч квадратных километров.
  2. Площадь поверхности сумм на Земле составляет 148628 тысяч квадратных километров.
  3. Площадь водной поверхности Земли составляет 361455 тысяч квадратных километров.

Вопросы и задания

  1. Переведите все три величины в квадратные метры и прочитайте полученные числа.
  2. Назовите классы и разряды, соответствующие отличным от нуля цифрам в записи этих чисел (в кв. м).
  3. В записи третьего числа (в кв. м) назовите разрядные единицы, соответствующие цифрам 1, 3, 4, 6.
  4. В двух записях второй величины (в кв. км. и кв. м) укажите, к каким разрядам относится цифра 2.
  5. Запишите разрядные единицы для цифры 2 в записях второй величины.

Блок 1.3. Диалог с компьютером.

Известно, что большие числа часто используются в астрономии. Приведем примеры. Среднее расстояние Луны от Земли равно 384 тыс. км. Расстояние Земли от Солнца (среднее) составляет 149504 тыс. км, Земли от Марса 55 млн. км. На компьютере с помощью текстового редактора Word создайте таблицы так, чтобы каждая цифра в записи указанных чисел была в отдельной клеточке (ячейке). Для этого выполните команды на панели инструментов: таблица → добавить таблицу → число строк (с помощью курсора ставим «1») → число столбцов (посчитайте сами). Создайте таблицы и для других чисел (блока «Самоподготовка»).

Блок 1.4. Эстафета больших чисел


В первой строке таблицы записано большое число. Прочитайте его. Затем выполните задания: передвигая цифры в записи числа вправо или влево, получайте следующие числа и читайте их. (Нули в конце числа не передвигайте!). В классе эстафету можно проводить, передавая её друг другу.

Строка 2 . Все цифры числа в первой строке переместите влево через две клетки. Цифры 5 замените следующей за ней цифрой. Пустые клетки заполните нулями. Прочитайте число.

Строка 3 . Все цифры числа во второй строке переместите вправо через три клетки. Цифры 3 и 4 в записи числа замените следующими цифрами. Пустые клетки заполните нулями. Прочитайте число.

Строка 4. Все цифры числа в строке 3 переместите на одну клетку влево. Цифру 6 в классе триллионов замените на предыдущую, а в классе миллиардов на последующую цифру. Пустые клетки заполните нулями. Прочитайте полученное число.

Строка 5 . Все цифры числа в строке 4 переместите через одну клетку вправо. Цифру 7 в разряде «десятки тысяч» замените на предыдущую, а в разряде «десятки миллионов» на последующую. Прочитайте полученное число.

Строка 6 . Все цифры числа в строке 5 переместите влево через 3 клетки. Цифру 8 в разряде сотен миллиардов замените на предыдущую, а цифру 6 в разряде сотен миллионов на последующую цифру. Пустые клетки заполните нулями. Просчитайте полученное число.

Строка 7 . Все цифры числа в строке 6 переместите вправо на одну клетку. Поменяйте местами цифры в разрядах десятков квадриллионов и десятков миллиардов. Прочитайте полученное число.

Строка 8 . Все цифры числа в строке 7 переместите влево через одну клетку. Поменяйте местами цифры в разрядах квинтиллионов и квадриллионов. Пустые клетки заполните нулями. Прочитайте полученное число.

Строка 9 . Все цифры числа в строке 8 переместите вправо через три клетки. Поменяйте местами две стоящие рядом в числовом ряду цифры из классов миллионов и триллионов. Прочитайте полученное число.

Строка 10 . Все цифры числа в строке 9 переместите на одну клетку вправо. Прочитайте полученное число. Выделите цифры, обозначающие год Московской олимпиады.

Блок 1.5. Давайте поиграем

Зажги огонек

Игровое поле - это рисунок новогодней ёлки. На ней 24 лампочки. Но подключены к электросети только 12 из них. Чтобы выбрать подключённые лампы, надо верно ответить на вопросы словами «Да» или «Нет». Эту же игру можно выполнить на компьютере верный ответ «зажигает» лампочку.

  1. Верно ли, что цифры - это специальные знаки для записи натуральных чисел? (1 - да, 2 - нет)
  2. Верно ли, что число 0 -это наименьшее натуральное число? (3 - да, 4 - нет)
  3. Верно ли, что в позиционной системе счисления одна и та же цифра может обозначать различные числа? (5 - да, 6 - нет)
  4. Верно ли, что определенное место в десятичной записи чисел называется разрядом? (7 - да, 8 - нет)
  5. Дано число 543 384. Верно ли, что в нем число самых старших разрядных единиц равно 543, а самых младших 384? (9 - да, 10 - нет)
  6. Верно ли, что в классе миллиардов самая старшая из разрядных единиц - это сто миллиардов, а самая младшая - один миллиард? (11 - да, 12 - нет)
  7. Дано число 458 121. Верно ли, что сумма числа самых старших разрядных единиц и числа самых младших равна 5? (13 - да, 14 - нет)
  8. Верно ли, что самая старшая из разрядных единиц класса триллионов в миллион раз больше самой старшей из разрядных единиц класса миллионов? (15 - да, 16 - нет)
  9. Даны два числа 637 508 и 831. Верно ли, что самая старшая разрядная единица первого числа в 1000 раз больше самой старшей разрядной единицы второго числа? (17 - да, 18 - нет)
  10. Дано число 432. Верно ли, что самая старшая разрядная единица этого числа в 2 раза больше самой младшей? (19 - да, 20 - нет)
  11. Дано число 100 000 000. Верно ли, что в нем число разрядных единиц, составляющих 10 000, равно 1000? (21 - да, 22 - нет)
  12. Верно ли, что перед классом триллионов находится класс квадриллионов, а перед этим классом - класс квинтиллионов? (23 - да, 24 - нет)

1.6. Из истории чисел

С древних времен человек сталкивался с необходимостью подсчитывать количество вещей, сравнивать количества объектов (например, пять яблок, семь стрел…; в племени 20 мужчин и тридцать женщин, …). Была также необходимость устанавливать порядок внутри некоторого количества объектов. Например, на охоте первым идет вождь племени, вторым самый сильный воин племени и т.д. Для этих целей использовались числа. Для них были придуманы специальные названия. В речи они называются числительными: один, два, три и т. д. - это количественные числительные, а первый, второй, третий - порядковые числительные. Записывались числа при помощи специальных знаков - цифр.

Со временем появились системы счисления. Это системы, включающие способы записи чисел и различных действий над ними. Самые древние из известных систем счисления - это египетская, вавилонская, римская системы счисления. На Руси в старину для написания цифр использовались буквы алфавита со специальным знаком ~ (титло). В настоящее время наибольшее распространение получила десятичная система счисления. Широко используются, особенно в компьютерном мире, двоичная, восьмеричная и шестнадцатеричная системы счисления.

Итак, для записи одного и того же числа можно использовать различные знаки - цифры. Так, число четыреста двадцать пять можно записать египетскими цифрами - иероглифами:

Это египетский способ записи чисел. Это же число римскими цифрами: CDXXV (римский способ записи чисел) или десятичными цифрами 425 (десятичная система записи чисел). В двоичной системе записи оно выглядит так: 110101001 (двоичная или бинарная система записи чисел), а в восьмеричной - 651 (восьмеричная система записи чисел). В шестнадцатеричной системе счисления оно запишется: 1А9 (шестнадцатеричная система записи чисел). Можно поступить совсем просто: сделать, подобно Робинзону Крузо, четыреста двадцать пять зарубок (или штрихов) на деревянном столбе - IIIIIIIII …... IIII . Это самые первые изображения натуральных чисел.

Итак, в десятичной системе записи чисел (в десятичном способе записи чисел) используются арабские цифры. Это десять различных символов - цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . В двоичной - две двоичные цифры: 0, 1; в восьмеричной - восемь восьмеричных цифр: 0, 1, 2, 3, 4, 5, 6, 7; в шестнадцатеричной - шестнадцать различных шестнадцатеричных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F; в шестидесятеричной (вавилонской) - шестьдесят различных символов - цифр и т.д.)

Десятичные цифры пришли в страны Европы из стран Ближнего Востока, Арабских стран. Отсюда название - арабские цифры . Но к арабам они попали из Индии, где были изобретены примерно в середине первого тысячелетия.

1.7. Римская система счисления

Одна из древних систем счисления, которая используется в наши дни, - это римская система. Приведем в таблице основные цифры римской системы счисления и соответствующие числа десятичной системы.

Римская цифра

C

50 пятьдесят

500 пятьсот

1000 тысяча

Римская система счисления является системой сложения. В ней в отличие от позиционных систем (например, десятичной) каждая цифра обозначает одно и то же число. Так, запись II - обозначает число два (1 + 1 = 2), запись III - число три (1 + 1 + 1 = 3), запись XXX - число тридцать (10 + 10 + 10 = 30) и т.д. Для записи чисел применяются следующие правила.

  1. Если меньшая цифра стоит после большей, то она прибавляется к большей: VII - число семь (5 + 2 = 5 + 1 + 1 = 7), XVII - число семнадцать (10 + 7 = 10 + 5 + 1 + 1 = 17), MCL - число одна тысяча сто пятьдесят (1000 + 100 + 50 = 1150).
  2. Если меньшая цифра стоит перед большей, то она вычитается из большей: IX - число девять (9 = 10 - 1), LM - число девятьсот пятьдесят (1000 - 50 = 950).

Для записи больших чисел приходится использовать (придумывать) новые символы - цифры. При этом записи чисел получаются громоздкими, производить вычисления с римскими цифрами очень сложно. Так год запуска первого искусственного спутника Земли (1957 г.) в римской записи имеет вид MCMLVII .

Блок 1. 8. Перфокарта

Чтение натуральных чисел

Эти задания проверяются при помощи карты с окружностями. Поясним ее применение. Выполнив все задания и найдя верные ответы (они обозначены буквами А, Б, В, и т.д.), наложите на карту лист прозрачной бумаги. Знаками «X» отметьте на нем правильные ответы, а также метку совмещения « + ». Затем наложите прозрачный лист на страницу так, чтобы совпали метки совмещения. Если все знаки «X» попали в серые кружочки на этой странице, значит, задания выполнены верно.

1.9. Порядок чтения натуральных чисел

При чтении натурального числа поступают следующим образом.

  1. Мысленно разбивают число на тройки (классы) справа - налево, с конца записи числа.
  1. Начиная с младшего класса, справа - налево (с конца записи числа) записывают названия классов: единицы, тысячи, миллионы, миллиарды, триллионы, квадриллионы, квинтиллионы.
  2. Читают число, начиная со старших классов. При этом называют число разрядных единиц и название класса.
  3. Если в разряде стоит ноль (разряд пуст), то его не называют. Если же все три разряда называемого класса - нули (разряды пусты), то данный класс не называется.

Прочтем (назовем) число, записанное в таблице (см.§1), согласно шагам 1 - 4. Мысленно разбиваем число 38001102987000128425 на классы справа - налево: 038 001 102 987 000 128 425. Укажем названия классов в этом числе, начиная с конца его записи: единицы, тысячи, миллионы, миллиарды, триллионы, квадриллионы, квинтиллионы. Теперь можно прочитать число, начиная со старшего класса. Называем трехзначные, двузначные и однозначные числа, добавляя название соответствующего класса. Пустые классы не называем. Получаем следующее число:

  • 038 - тридцать восемь квинтиллионов
  • 001 - один квадриллион
  • 102 - сто два триллиона
  • 987 - девятьсот восемьдесят семь миллиардов
  • 000 - не называем (не читаем)
  • 128 - сто двадцать восемь тысяч
  • 425 - четыреста двадцать пять

В результате натуральное число 38 001 102 987 000 128 425 прочтем так: "тридцать восемь квинтиллионов один квадриллион сто два триллиона девятьсот восемьдесят семь миллиардов сто двадцать восемь тысяч четыреста двадцать пять".

1.9. Порядок записи натуральных чисел

Запись натуральных чисел выполняют в следующем порядке.

  1. Записывают по три цифры каждого класса, начиная со старшего класса до разряда единиц. При этом для старшего класса цифр может быть две или одна.
  2. Если класс или разряд не назван, то в соответствующих разрядах записывают нули.

Например, число двадцать пять миллионов триста два записано в виде: 25 000 302 (класс тысяч не назван, поэтому во всех разрядах класса тысяч записаны нули).

1.10. Представление натуральных чисел в виде суммы разрядных слагаемых

Приведём пример: 7 563 429 - это десятичная запись числа семь миллионов пятьсот шестьдесят три тысячи четыреста двадцать девять. Данное число содержит семь миллионов, пять сотен тысяч, шесть десятков тысяч, три тысячи, четыре сотни, два десятка и девять единиц. Его можно представить как сумму: 7 563 429 = 7 000 000 + 500 000 + 60 000 + + 3 000 + 400 + 20 + 9. Такая запись называется представлением натурального числа в виде суммы разрядных слагаемых.

Блок 1.11. Давайте поиграем

Сокровища подземелья

На игровом поле рисунок к сказке Киплинга «Маугли». На пяти сундуках навесные замки. Чтобы открыть их, надо решить задачи. При этом, открыв деревянный сундук, вы получаете одно очко. Открыв оловянный сундук, получаете два очка, медный - три очка, серебряный - четыре, золотой - пять. Выигрывает тот, кто быстрее откроет все сундуки. Эту же игру можно выполнить на компьютере.

  1. Деревянный сундук

Найдите, сколько денег (в тыс. рублей) находится в этом сундуке. Для этого надо найти общее число самых младших разрядных единиц класса миллионов для числа: 125308453231.

  1. Оловянный сундук

Найдите, сколько денег (в тыс. рублей) в этом сундуке. Для этого в числе 12530845323 найдите число самых младших разрядных единиц класса единиц и число самых младших разрядных единиц класса миллионов. Затем найдите сумму этих чисел и справа припишите число, стоящее в разряде десятков миллионов.

  1. Медный сундук

Чтобы найти деньги этого сундука (в тыс. рублей), надо в числе 751305432198203 найдите число самых младших разрядных единиц в классе триллионов и число самых младших единиц в классе миллиардов. Затем найдите сумму этих чисел и справа припишите натуральные числа класса единиц этого числа в порядке их расположения.

  1. Серебряный сундук

Деньги этого сундука (в млн. рублей) покажет сумма двух чисел: числа самых младших разрядных единиц класса тысяч и средних разрядных единиц класса миллиардов для числа 481534185491502.

  1. Золотой сундук

Дано число 800123456789123456789. Если перемножить числа в самых старших разрядах всех классов этого числа, то получим деньги этого сундука в млн. рублей.

Блок 1.12. Установите соответствие

Запись натуральных чисел. Представление натуральных чисел в виде суммы разрядных слагаемых

Каждому заданию в левой колонке подберите решение из правой колонки. Ответ запишите в виде: 1а; 2г; 3б…

Запишите цифрами число: пять миллионов двадцать пять тысяч

Запишите цифрами число: пять миллиардов двадцать пять миллионов

Запишите цифрами число: пять триллионов двадцать пять

Запишите цифрами число: семьдесят семь миллионов семьдесят семь тысяч семьсот семьдесят семь

Запишите цифрами число: семьдесят семь триллионов семьсот семьдесят семь тысяч семь

Запишите цифрами число: семьдесят семь миллионов семьсот семьдесят семь тысяч семь

Запишите цифрами число: сто двадцать три миллиарда четыреста пятьдесят шесть миллионов семьсот восемьдесят девять тысяч

Запишите цифрами число: сто двадцать три миллиона четыреста пятьдесят шесть тысяч семьсот восемьдесят девять

Запишите цифрами число: три миллиарда одиннадцать

Запишите цифрами число: три миллиарда одиннадцать миллионов

Вариант 2

тридцать два миллиарда сто семьдесят пять миллионов двести девяносто восемь тысяч триста сорок один

100000000 + 1000000 + 10000 + 100 + 1

Представьте в виде суммы разрядных слагаемых число: триста двадцать один миллион сорок один

30000000000 + 2000000000 +

100000000 + 70000000 + 5000000 +

200000 + 90000 + 8000 + 300 + 40 + 1

Представьте в виде суммы разрядных слагаемых число: 321000175298341

Представьте в виде суммы разрядных слагаемых число: 101010101

Представьте в виде суммы разрядных слагаемых число: 11111

300000000 + 20000000 + 1000000 +

5000000 + 300000 + 20000 + 1000

Запишите десятичной записью число, представленное в виде суммы разрядных слагаемых: 5000000 + 300 + 20 + 1

30000000000000 + 2000000000000 + 1000000000000 + 100000000 + 70000000 + 5000000 + 200000 + 90000 + 8000 + 300 + 40 + 1

Запишите десятичной записью число, представленное в виде суммы разрядных слагаемых:

10000000000 + 2000000000 + 100000 + 10 + 9

Запишите десятичной записью число, представленное в виде суммы разрядных слагаемых:

10000000000 + 2000000000 + 100000000 +

10000000 + 9000000

Запишите десятичной записью число, представленное в виде суммы разрядных слагаемых: 9000000000000 + 9000000000 + 9000000 + 9000 + 9

10000 + 1000 + 100 + 10 + 1

Блок 1.13. Фасетный тест

Название теста происходит от слова «фасеточный глаз насекомых». Это сложный глаз, состоящий из отдельных «глазков». Задания фасетного теста образуются из отдельных элементов, обозначенных цифрами. Обычно фасетные тесты содержат большое число заданий. Но в этом тесте задач всего четыре, но они составляются из большого числа элементов. Это сделано для того, чтобы научить вас «собирать» задачи теста. Если вы сможете их составить, то легко справитесь с другими фасетными тестами.

Как составляются задачи, поясним на примере третьей задачи. Она составляется из элементов теста под номерами: 1, 4, 7, 11, 1, 5, 7, 9, 10, 16, 17, 22, 21, 25

«Если » 1) из таблицы взять цифры (цифру); 4) 7; 7) поместить её в разряд; 11) миллиардов; 1) из таблицы взять цифру; 5) 8; 7) поместить её в разряды; 9) десятки миллионов; 10) сотни миллионов; 16) сотни тысяч; 17) десятки тысяч; 22) в разряды тысяч и сотен поместить цифры 9 и 6. 21) остальные разряды заполнить нулями; «ТО » 26) получим число, равное времени (периоду) обращения планеты Плутон вокруг Солнца в секундах (с); «Это число равно »: 7880889600 с. В ответах оно обозначено буквой «в».

Решая задачи, карандашом записывайте цифры в ячейки таблицы.

Фасетный тест. Составьте число

В таблице записаны цифры:

Если

1) из таблицы взять цифру (цифры):

2) 4; 3) 5; 4) 7; 5) 8; 6) 9;

7) поместить эту цифру (цифры) в разряд (разряды);

8) сотни квадриллионов и десятки квадриллионов;

9) десятки миллионов;

10) сотни миллионов;

11) миллиардов;

12) квинтиллионов;

13) десятки квинтиллионов;

14) сотни квинтиллионов;

15) триллионов;

16) сотен тысяч;

17) десятки тысяч;

18) заполнить ею (ими) класс (классы);

19) квинтиллионов;

20) миллиардов;

21) остальные разряды заполнить нулями;

22) в разряды тысяч и сотен поместить цифры 9 и 6;

23) получим число, равное массе Земли в десятках тонн;

24) получим число, примерно равное объему Земли в куб.м;

25) получим число, равное расстоянию (в метрах) от Солнца до самой дальней планеты солнечной системы Плутона;

26) получим число, равное времени (периоду) обращения планеты Плутон вокруг Солнца в секундах (с);

Это число равно:

а) 5929000000000

б) 999990000000000000000

г) 598000000000000000000

Решите задачи:

1, 3, 6, 5, 18, 19, 21, 23

1, 6, 7, 14, 13, 12, 8, 21, 24

1, 4, 7, 11, 1, 5, 7, 10, 9, 16, 17, 22, 21, 26

1, 3, 7, 15, 1, 6, 2, 6, 18, 20, 21, 25

Ответы

1, 3, 6, 5, 18, 19, 21, 23 - г

1, 6, 7, 14, 13, 12, 8, 21, 24 - б

1, 4, 7, 11, 1, 5, 7, 10, 9, 16, 17, 22, 21, 26 - в

1, 3, 7, 15, 1, 6, 2, 6, 18, 20, 21, 25 - а


Натуральные числа для нас очень привычны и естественны. И это не удивительно, так как знакомство с ними начинается с первых лет нашей жизни на интуитивно понятном уровне.

Информация этой статьи создает базовое представление о натуральных числах, раскрывает их предназначение, прививает навыки записи и чтения натуральных чисел. Для лучшего усвоения материала приведены необходимые примеры и иллюстрации.

Навигация по странице.

Натуральные числа – общее представление.

Не лишено здравой логики следующее мнение: появление задачи счета предметов (первый, второй, третий предмет и т.д.) и задачи указания количества предметов (один, два, три предмета и т.д.) обусловило создание инструмента для ее решения, этим инструментом явились натуральные числа .

Из этого предложения видно основное предназначение натуральных чисел – нести в себе информацию о количестве каких-либо предметов или порядковом номере данного предмета в рассматриваемом множестве предметов.

Чтобы человек мог использовать натуральные числа, они должны быть каким-либо образом доступны как для восприятия, так и для воспроизведения. Если озвучить каждое натуральное число, то оно станет воспринимаемым на слух, а если изобразить натуральное число, то его можно будет увидеть. Это самые естественные способы, позволяющие донести и воспринять натуральные числа.

Так приступим же к приобретению навыков изображения (записи) и навыков озвучивания (чтения) натуральных чисел, познавая при этом их смысл.

Десятичная запись натурального числа.

Сначала следует определиться с тем, от чего мы будем отталкиваться при записи натуральных чисел.

Давайте запомним изображения следующих знаков (покажем их через запятую): 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Приведенные изображения представляют собой запись так называемых цифр . Давайте сразу договоримся не переворачивать, не наклонять и иным образом не искажать цифры при записи.

Теперь условимся, что в записи любого натурального числа могут присутствовать только лишь указанные цифры и не могут присутствовать никакие другие символы. Также условимся, что цифры в записи натурального числа имеют одинаковую высоту, располагаются в строчку друг за другом (с почти отсутствующими отступами) и слева находится цифра, отличная от цифры 0 .

Приведем несколько примеров правильной записи натуральных чисел: 604 , 777 277 , 81 , 4 444 , 1 001 902 203, 5 , 900 000 (обратите внимание: отступы между цифрами не всегда одинаковы, подробнее об этом будет сказано при рассмотрении ). Из приведенных примеров видно, что в записи натурального числа не обязательно присутствуют все из цифр 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ; некоторые или все цифры, участвующие в записи натурального числа, могут повторяться.

Записи 014 , 0005 , 0 , 0209 не являются записями натуральных чисел, так как слева находится цифра 0 .

Запись натурального числа, выполненная с учетом всех требований, описанных в этом пункте, называется десятичной записью натурального числа .

Дальше мы не будем разграничивать натуральные числа и их запись. Поясним это: дальше в тексте будут использоваться фразы типа «дано натуральное число 582 », которые будут означать, что дано натуральное число, запись которого имеет вид 582 .

Натуральные числа в смысле количества предметов.

Пришло время разобраться с количественным смыслом, который несет в себе записанное натуральное число. Смысл натуральных чисел в плане нумерации предметов рассмотрен в статье сравнение натуральных чисел .

Начнем с натуральных чисел, записи которых совпадают с записями цифр, то есть, с чисел 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 и 9 .

Представим, что мы открыли глаза и увидели некоторый предмет, например, вот такой . В этом случае можно записать, что мы видим 1 предмет. Натуральное число 1 читается как «один » (склонение числительного «один», а также других числительных, дадим в пункте ), для числа 1 принято еще одно название - «единица ».

Однако, термин «единица» - многозначный, им кроме натурального числа 1 , называют нечто, рассматриваемое как единое целое. Например, любой один предмет из их множества можно назвать единицей. К примеру, любое яблоко из множества яблок – это единица, любая стая птиц из множества стай птиц – это также единица и т.д.

Теперь открываем глаза и видим: . То есть, мы видим один предмет и еще один предмет. В этом случае можно записать, что мы видим 2 предмета. Натуральное число 2 , читается как «два ».

Аналогично, - 3 предмета (читается «три » предмета), - 4 четыре ») предмета, - 5 пять »), - 6 шесть »), - 7 семь »), - 8 восемь »), - 9 девять ») предметов.

Итак, с рассмотренной позиции натуральные числа 1 , 2 , 3 , …, 9 указывают количество предметов.

Число, запись которого совпадает с записью цифры 0 , называют «нуль ». Число нуль НЕ натуральное, однако, его обычно рассматривают вместе с натуральными числами. Запомним: нуль означает отсутствие чего-либо. Например, нуль предметов – это ни одного предмета.

В следующих пунктах статьи мы продолжим раскрывать смысл натуральных чисел в плане указания количества.

Однозначные натуральные числа.

Очевидно, запись каждого из натуральных чисел 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 состоит из одного знака - одной цифры.

Определение.

Однозначные натуральные числа – это натуральные числа, запись которых состоит из одного знака - одной цифры.

Перечислим все однозначные натуральные числа: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Всего однозначных натуральных чисел девять.

Двузначные и трехзначные натуральные числа.

Сначала дадим определение двузначных натуральных чисел.

Определение.

Двузначные натуральные числа – это натуральные числа, запись которых составляют два знака - две цифры (различные или одинаковые).

К примеру, натуральное число 45 – двузначное, числа 10 , 77 , 82 тоже двузначные, а 5 490 , 832 , 90 037 – не двузначные.

Давайте разберемся, какой смысл несут в себе двузначные числа, при этом будем отталкиваться от уже известного нам количественного смысла однозначных натуральных чисел.

Для начала введем понятие десятка .

Представим такую ситуацию – мы открыли глаза и увидели множество, состоящее из девяти предметов и еще одного предмета. В этом случае говорят об 1 десятке (одном десятке) предметов. Если рассматривают вместе один десяток и еще один десяток, то говорят о 2 десятках (двух десятках). Если к двум десяткам присоединить еще один десяток, то будем иметь три десятка. Продолжая этот процесс, будем получать четыре десятка, пять десятков, шесть десятков, семь десятков, восемь десятков, и наконец, девять десятков.

Теперь мы можем перейти к сути двузначных натуральных чисел.

Для этого посмотрим на двузначное число как на два однозначных числа – одно находится слева в записи двузначного числа, другое находится справа. Число слева указывает количество десятков, а число справа – количество единиц. При этом если справа в записи двузначного числа находится цифра 0 , то это означает отсутствие единиц. В этом и есть весь смысл двузначных натуральных чисел в плане указания количества.

К примеру, двузначное натуральное число 72 соответствует 7 десяткам и 2 единицам (то есть, 72 яблока – это множество из семи десятков яблок и еще двух яблок), а число 30 отвечает 3 десяткам и 0 единицам, то есть, единиц, которые не объединены в десятки, нет.

Ответим на вопрос: «Сколько всего существует двузначных натуральных чисел»? Ответ: их 90 .

Переходим к определению трехзначных натуральных чисел.

Определение.

Натуральные числа, запись которых состоит из 3 знаков – 3 цифр (различных или повторяющихся), называются трехзначными .

Примерами натуральных трехзначных чисел являются 372 , 990 , 717 , 222 . Натуральные числа 7 390 , 10 011 , 987 654 321 234 567 не являются трехзначными.

Для понимания смысла, заложенного в трехзначных натуральных числах, нам понадобится понятие сотни .

Множество из десяти десятков – это 1 сотня (одна сотня). Сотня и сотня – это 2 сотни. Две сотни и еще одна сотня – это три сотни. И так далее, имеем четыре сотни, пять сотен, шесть сотен, семь сотен, восемь сотен, и, наконец, девять сотен.

Теперь посмотрим на трехзначное натуральное число как на три однозначных натуральных числа, идущих друг за другом справа налево в записи трехзначного натурального числа. Число справа указывает количество единиц, следующее число указывает количество десятков, следующее число – количество сотен. Цифры 0 в записи трехзначного числа означают отсутствие десятков и (или) единиц.

Таким образом, трехзначное натуральное число 812 соответствует 8 сотням, 1 десятку и 2 единицам; число 305 – трем сотням (0 десяткам, то есть, десятков, не объединенных в сотни, нет) и 5 единицам; число 470 – четырем сотням и семи десяткам (единиц, не объединенных в десятки, нет); число 500 – пяти сотням (десятков, не объединенных в сотни, и единиц, не объединенных в десятки, нет).

Аналогичным образом можно дать определения четырехзначных, пятизначных, шестизначных и т.д. натуральных чисел.

Многозначные натуральные числа.

Итак, переходим к определению многозначных натуральных чисел.

Определение.

Многозначные натуральные числа – это натуральные числа, запись которых состоит из двух или трех или четырех и т.д. знаков. Иными словами, многозначные натуральные числа – это двузначные, трехзначные, четырехзначные и т.д. числа.

Сразу скажем, что множество, состоящее из десяти сотен, – это одна тысяча , тысяча тысяч – это один миллион , тысяча миллионов – это один миллиард , тысяча миллиардов – это один триллион . Тысяче триллионов, тысяче тысяч триллионов и так далее также можно дать свои названия, но в этом нет особой надобности.

Так какой смысл скрывается за многозначными натуральными числами?

Посмотрим на многозначное натуральное число как на следующие одно за другим справа налево однозначные натуральные числа. Число справа указывает количество единиц, следующее число – количество десятков, следующее – количество сотен, дальше – количество тысяч, дальше – количество десятков тысяч, дальше – сотен тысяч, дальше – количество миллионов, дальше – количество десятков миллионов, дальше – сотен миллионов, дальше – количество миллиардов, далее – количество десятков миллиардов, далее – сотен миллиардов, далее – триллионов, далее - десятков триллионов, далее - сотен триллионов и так далее.

К примеру, многозначное натуральное число 7 580 521 соответствует 1 единице, 2 десяткам, 5 сотням, 0 тысячам, 8 десяткам тысяч, 5 сотням тысяч и 7 миллионам.

Таким образом, мы научились группировать единицы в десятки, десятки в сотни, сотни в тысячи, тысячи в десятки тысяч и так далее и выяснили, что цифры в записи многозначного натурального числа указывают соответствующее количество вышеперечисленных групп.

Чтение натуральных чисел, классы.

Мы уже упоминали, как читаются однозначные натуральные числа. Выучим содержимое следующих таблиц наизусть.






А как читаются остальные двузначные числа?

Поясним на примере. Прочитаем натуральное число 74 . Как мы выяснили выше, это число соответствует 7 десяткам и 4 единицам, то есть, 70 и 4 . Обращаемся к только что записанным таблицам, и число 74 читаем как: «Семьдесят четыре» (союз «и» не произносим). Если нужно прочитать число 74 в предложении: «Нет 74 яблок» (родительный падеж), то это будет звучать так: «Нет семидесяти четырех яблок». Еще пример. Число 88 – это 80 и 8 , следовательно, читаем: «Восемьдесят восемь». А вот пример предложения: «Он думает о восьмидесяти восьми рублях».

Переходим к чтению трехзначных натуральных чисел.

Для этого нам придется выучить еще несколько новых слов.



Осталось показать, как читаются остальные трехзначные натуральные числа. При этом будем использовать уже полученные навыки чтения однозначных и двузначных чисел.

Разберем пример. Прочитаем число 107 . Это число соответствует 1 сотне и 7 единицам, то есть, 100 и 7 . Обратившись к таблицам, читаем: «Сто семь». А теперь произнесем число 217 . Это число есть 200 и 17 , поэтому, читаем: «Двести семнадцать». Аналогично, 888 – это 800 (восемьсот) и 88 (восемьдесят восемь), читаем: «Восемьсот восемьдесят восемь».

Переходим к чтению многозначных чисел.

Для чтения запись многозначного натурального числа разбивается, начиная справа, на группы по три цифры, при этом в самой левой такой группе может оказаться либо 1 , либо 2 , либо 3 цифры. Эти группы называются классами . Класс, находящийся справа, называют классом единиц . Следующий за ним (справа налево) класс называют классом тысяч , следующий класс – классом миллионов , следующий – классом миллиардов , далее идет класс триллионов . Можно дать названия и следующих классов, но натуральные числа, запись которых состоит из 16 , 17 , 18 и т.д. знаков, обычно не читают, так как их очень трудно воспринять на слух.

Посмотрите на примеры разбиения многозначных чисел на классы (для наглядности классы отделяют друг от друга небольшим отступом): 489 002 , 10 000 501 , 1 789 090 221 214 .

Занесем записанные натуральные числа в таблицу, по которой легко научиться их читать.


Чтобы прочитать натуральное число, называем слева направо составляющие его числа по классам и добавляем название класса. При этом не произносим название класса единиц, а также пропускаем те классы, которые составляют три цифры 0 . Если в записи класса слева находится цифра 0 или две цифры 0 , то игнорируем эти цифры 0 и читаем число, полученное отбрасыванием этих цифр 0 . К примеру, 002 прочитаем как «два», а 025 - как «двадцать пять».

Прочитаем число 489 002 по приведенным правилам.

Чтение ведем слева направо,

  • читаем число 489 , представляющее класс тысяч, - «четыреста восемьдесят девять»;
  • добавляем название класса, получаем «четыреста восемьдесят девять тысяч»;
  • дальше в классе единиц видим 002 , слева находятся нули, их игнорируем, поэтому 002 читаем как «два»;
  • название класса единиц добавлять не надо;
  • в итоге имеем 489 002 – «четыреста восемьдесят девять тысяч два».

Приступаем к чтению числа 10 000 501 .

  • Слева в классе миллионов видим число 10 , читаем «десять»;
  • добавляем название класса, имеем «десять миллионов»;
  • далее видим запись 000 в классе тысяч, так как все три цифры есть цифры 0 , то пропускаем этот класс и переходим к следующему;
  • класс единиц представляет число 501 , которое читаем «пятьсот один»;
  • таким образом, 10 000 501 – десять миллионов пятьсот один.

Сделаем это без подробных пояснений: 1 789 090 221 214 – «один триллион семьсот восемьдесят девять миллиардов девяноста миллионов двести двадцать одна тысяча двести четырнадцать».

Итак, в основе навыка чтения многозначных натуральных чисел лежит умение разбивать многозначные числа на классы, знание названий классов и умение читать трехзначные числа.

Разряды натурального числа, значение разряда.

В записи натурального числа значение каждой цифры зависит от ее позиции. К примеру, натуральное число 539 соответствует 5 сотням, 3 десяткам и 9 единицам, следовательно, цифра 5 в записи числа 539 определяет количество сотен, цифра 3 – количество десятков, а цифра 9 – количество единиц. При этом говорят, что цифра 9 стоит в разряде единиц и число 9 является значением разряда единиц , цифра 3 стоит в разряде десятков и число 3 является значением разряда десятков , а цифра 5 – в разряде сотен и число 5 является значением разряда сотен .

Таким образом, разряд – это с одной стороны позиция цифры в записи натурального числа, а с другой стороны значение этой цифры, определяемое ее позицией.

Разрядам присвоены названия. Если смотреть на цифры в записи натурального числа справа налево, то им будут соответствовать следующие разряды: единиц, десятков, сотен, тысяч, десятков тысяч, сотен тысяч, миллионов, десятков миллионов и так далее.

Названия разрядов удобно запоминать, когда они представлены в виде таблицы. Запишем таблицу, содержащую названия 15 разрядов.


Заметим, что количество разрядов данного натурального числа равно количеству знаков, участвующих в записи этого числа. Таким образом, в записанной таблице содержатся названия разрядов всех натуральных чисел, запись которых содержит до 15 знаков. Следующие разряды также имеют свои названия, но они очень редко используются, поэтому не имеет смысла их упоминать.

С помощью таблицы разрядов удобно определять разряды данного натурального числа. Для этого нужно записать в эту таблицу данное натуральное число так, чтобы в каждом разряде оказалась одна цифра, и крайняя справа цифра оказалась в разряде единиц.

Приведем пример. Запишем натуральное число 67 922 003 942 в таблицу, при этом станут отчетливо видны разряды и значения этих разрядов.


В записи этого числа цифра 2 стоит в разряде единиц, цифра 4 – в разряде десятков, цифра 9 – в разряде сотен и т.д. Следует обратить внимание на цифры 0 , находящиеся в разрядах десятков тысяч и сотен тысяч. Цифры 0 в этих разрядах означают отсутствие единиц данных разрядов.

Следует еще обмолвиться о так называемом низшем (младшем) и высшем (старшем) разряде многозначного натурального числа. Низшим (младшим) разрядом любого многозначного натурального числа является разряд единиц. Высшим (старшим) разрядом натурального числа является разряд, соответствующий крайней справа цифре в записи этого числа. Например, младшим разрядом натурального числа 23 004 является разряд единиц, а старшим – разряд десятков тысяч. Если в записи натурального числа двигаться по разрядам слева направо, то каждый следующий разряд ниже (младше) предыдущего. Например, разряд тысяч младше разряда десятков тысяч, тем более разряд тысяч младше разряда сотен тысяч, миллионов, десятков миллионов и т.д. Если же в записи натурального числа двигаться по разрядам справа налево, то каждый следующий разряд выше (старше) предыдущего. Например, разряд сотен старше разряда десятков, и тем более, старше разряда единиц.

В некоторых случаях (например, при выполнении сложения или вычитания) используется не само натуральное число, а сумма разрядных слагаемых этого натурального числа.

Вкратце о десятичной системе счисления.

Итак, мы познакомились с натуральными числами, со смыслом, заложенным в них, и способом записи натуральных чисел с помощью десяти цифр.

Вообще, метод записи чисел с помощью знаков, называют системой счисления . Значение цифры в записи числа может зависеть от ее позиции, а может и не зависеть от ее позиции. Системы счисления, в которых значение цифры в записи числа зависит от ее позиции, называют позиционными .

Таким образом, рассмотренные нами натуральные числа и метод их записи, указывает на то, что мы пользуемся позиционной системой счисления. Следует заметить, что особое место в этой системе счисления имеет число 10 . Действительно, счет ведется десятками: десять единиц объединяются в десяток, десяток десятков объединяется в сотню, десяток сотен – в тысячу, и так далее. Число 10 называют основанием данной системы счисления, а саму систему счисления называют десятичной .

Помимо десятичной системы счисления существуют и другие, например, в информатике используется двоичная позиционная система счисления, а с шестидесятеричной системой мы сталкиваемся, когда речь идет об измерении времени.

Список литературы.

  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

Определение

Натуральными числами называются числа, предназначенные для счета предметов. Для записи натуральных чисел используются 10 арабских цифр (0–9), положенных в основание общепринятой для математических расчетов десятичной системы счисления.

Последовательность натуральных чисел

Натуральные числа составляют ряд, начинающийся с 1 и охватывающий множество всех положительных целых чисел. Такая последовательность состоит из чисел 1,2,3, … . Это означает, что в натуральном ряду:

  1. Есть наименьшее число и нет наибольшего.
  2. Каждое следующее число больше предыдущего на 1 (исключение – сама единица).
  3. При стремлении к бесконечности числа растут неограниченно.

Иногда в ряд натуральных чисел вводят и 0. Это допустимо, и тогда говорят о расширенном натуральном ряде.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.

То есть всякий раз мы имеем дело с тремя цифрами, означающими единицы, десятки и сотни более крупного наименования. Такие группы формируют классы. И если с первыми тремя классами в повседневной жизни приходится иметь дело более или менее часто, то другие следует перечислить, потому что далеко не все помнят наизусть их названия.

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Сложение натуральных чисел

Сложение натур.чисел представляет собой арифметическое действие, позволяющее получить число, в котором содержится столько же единиц, сколько имеется в складываемых числах вместе.

Знаком сложения является знак «+». Складываемые числа называются слагаемыми, получаемый результат – суммой.

Небольшие числа складывают (суммируют) устно, письменно такие действия записывают в строку.

Многозначные числа, которые прибавлять в уме затруднительно, принято складывать в столбик. Для этого числа записывают одно под другим, выравнивая по последней цифре, то есть пишут разряд единиц под разрядом единиц, разряд сотен под разрядом сотен и так далее. Далее нужно попарно сложить разряды. Если сложение разрядов происходит с переходом через десяток, то этот десяток фиксируется как единица над разрядом слева (то есть следующим за ним) и суммируется вместе с цифрами этого разряда.

Если в столбик складывается не 2, а больше чисел, то при суммировании цифр разряда избыточным может оказаться не 1 десяток, а несколько. В этом случае на следующий разряд переносится количество таких десятков.

Вычитание натуральных чисел

Вычитание – это арифметическое действие, обратное сложению, которое сводится к тому, что по имеющейся сумме и одному из слагаемых нужно найти другое – неизвестное слагаемое. Число, из которого вычитают, называется уменьшаемым; число, которое вычитают, – вычитаемым. Результат вычитания называют разностью. Знак, которым обозначают действие вычитания, является «–».

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов. Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10. Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Произведение натуральных чисел

Произведение (или умножение) натуральных чисел – это арифметическое действие, представляющее собой нахождение суммы произвольного количества одинаковых слагаемых. Для записи действия умножения используют знак «·» (иногда «×» или «*»). Например: 3·5=15.

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме. При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают. При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примечание
  1. Произведение любого натур.числа на 1 (или 1 на число) равно самому числу. Например: 376·1=376; 1·86=86.
  2. Когда один из множителей либо оба множителя равны 0, то и произведение равно 0. Например: 32·0=0; 0·845=845; 0·0=0.

Деление натуральных чисел

Делением называют арифметическое действие, с помощью которого по известному произведению и одному из множителей может быть найдет другой – неизвестный – множитель. Деление является действием, обратным умножению, и используется для проверки правильности выполненного умножения (и наоборот).

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него. Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным. Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3<7, то это означает, что число 5 было подобрано верно. Результат деления следует записать так: 38:7=5 (остаток 3).

Многозначные числа делят в столбик. Для этого делимое и делитель записывают рядом, отделив делитель вертикальной и горизонтальной чертой. В делимом выделяют первую цифру или несколько первых цифр (справа), которые должны представлять собой число, минимально достаточное для деления на делитель (то есть это число должно быть больше делителя). Для этого числа подбирают неполное частное, как описано в правиле деления с остатком. Цифру множителя, использованного для нахождения неполного частного, записывают под делителем. Неполное частное записывают под числом, которое делили, выровняв его по правому краю. Находят их разность. Сносят следующую цифру делимого, вписав ее рядом с этой разностью. Для полученного числа снова находят неполное частное, записав цифру подобранного множителя, рядом с предыдущей под делителем. И так далее. Такие действия производят до тех пор, пока не закончатся цифры делимого. После этого деление считается завершенным. Если делимое и делитель делятся нацело (без остатка), то последняя разность даст нуль. В противном случае будет получено число остатка.

Возведение в степень

Возведение в степень – это математическое действие, заключающееся в перемножении произвольного количества одинаковых чисел. Например: 2·2·2·2.

Такие выражения записываются в виде: a x ,

где a – перемножаемое само на себя число, x – количество таких множителей.

Простые и составные натуральные числа

Всякое натуральное число, кроме 1, можно разделить как минимум на 2 числа – на единицу и на само себя. Исходя из этого критерия, натуральные числа разделяют на простые и составные.

Простыми считаются числа, которые делятся только на 1 и на само себя. Числа, которые делятся более чем на эти 2 числа, называют составными. Единица, делящаяся исключительно на саму себя, не относится ни к простым, ни к составным.

Простыми являются числа: 2,3,5,7,11,13,17,19 и т.д. Примеры составных чисел: 4 (делится на 1,2,4), 6 (делится на 1,2,3,6), 20 (делится на 1,2,4,5,10,20).

Всякое составное число можно разложить на простые множители. Под простыми множителями при этом понимаются его делители, являющиеся простыми числами.

Пример разложения на простые множители:

Делители натуральных чисел

Под делителем понимают число, на которое можно без остатка разделить данное число.

В соответствии с этим определением, простые натур.числа имеют 2 делителя, составные – больше 2 делителей.

Многие числа имеют общие делители. Общим делителем называется число, на которое данные числа делятся без остатка.

  • У чисел 12 и 15 общий делитель 3
  • У чисел 20 и 30 общие делители 2,5,10

Особое значение имеет наибольший общий делитель (НОД). Это число, в частности, полезно уметь находить для сокращения дробей. Для его нахождения требуется разложить данные числа на простые множители и представить его как произведение их общих простых множителей, взятых в наименьших своих степенях.

Требуется найти НОД чисел 36 и 48.

Делимость натуральных чисел

Далеко не всегда представляется возможным «на глазок» определить, делится ли одно число на другое без остатка. В таких случаях полезным оказывается соответствующий признак делимости, то есть правило, по которому за считанные секунды можно определить, можно ли разделить числа без остатка. Для обозначения делимости используется знак «».

Наименьшее общее кратное

Эта величина (обозначается НОК) представляет собой наименьшее число, которое делится на каждое из заданных. НОК может быть найден для произвольного набора натуральных чисел.

НОК, как и НОД, имеет значительный прикладной смысл. Так, именно НОК нужно находить, приводя обыкновенные дроби к общему знаменателю.

НОК определяется путем разложения заданных чисел на простые множители. Для его формирования берется произведение, состоящее из каждого из встречающихся (хотя бы для 1 числа) простых множителей, представленных в максимальной степени.

Требуется найти НОК чисел 14 и 24.

Среднее арифметическое

Средним арифметических произвольного (но конечного) количества натуральных чисел является сумма всех этих чисел, разделенная на количество слагаемых:

Среднее арифметическое представляет собой некоторое усредненное значение для числового множества.

Даны числа 2,84,53,176,17,28. Требуется найти их среднее арифметическое.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.