Радиационные дозы для человека в рентгенах. Допустимая доза облучения для человека

Радиационный фон

Радиационный фон — это уровень квантовых потоков и элементарных частиц в окружающей среде. Это понятие важно для человека в том случае, когда речь идет об ионизирующем излучении. В большом количестве оно представляет серьезную опасность для живых организмов. Если естественный радиационный фон (ЕРФ) местности не превышает допустимых норм, то на ней можно проживать, заниматься фермерством и употреблять в пищу дары природы. Когда ЕРФ повышенный, то в таких местах находиться нельзя, даже при соблюдении мер безопасности следует сократить время пребывания на зараженной территории до минимума. В некоторых случаях радиация приносит пользу человеку. С ее помощью проводится весьма успешное лечение онкологических заболеваний. Воздействие изотопов на растения, насекомых и животных позволяет выводить новые виды, отличающиеся набором положительных свойств.

Разновидности радиационного излучения

На естественный радиационный фон влияет количество элементарных частиц, которые ранее попали на местность или предмет и продолжают поступать из различных источников.

Современная наука различает такие виды излучения, которые непосредственно влияют на естественный радиационный фон:

  1. Гамма-излучение. Представляет собой поток микрочастиц с нейтральным зарядом. Обладает высокой проникающей способностью. Этот тип радиации наиболее губителен для всего живого. Защитой от рентгеновских лучей являются материалы, обладающие тяжелыми ядрами. Они задерживают гамма-частицы, становясь источником излучения.
  2. Бета-излучение. Его носителем являются более крупные частицы со средней проникающей способностью. Являясь потенциально опасными для людей, бета-лучи задерживаются в тонком слое металла, древесины и камня.
  3. Альфа-излучение. Является потоком тяжелых положительно заряженных частиц. Несут в себе мощный ионный заряд, обладающий разрушительным действием для клеток живых тканей. Что касается человека, то альфа-частицы поражают только внешний слой кожи. Преградой для них является даже одежда.

На земле источниками излучения, создающими естественный и искусственный радиационный фон, являются солнце, звезды, горные породы и промышленные объекты, возведенные человеком. Создают уровень заражения изотопы таких химических элементов, как йод, уран, радий, стронций, кобальт, цезий и плутоний. Зная, что такое радиация, можно успешно защищаться от такого опасного для жизни и здоровья явления.

Источники естественной радиации

До тех пор, пока Земля не обрела железного ядра и не получила импульса на вращение, она была открыта для всех типов радиоактивного излучения. После того как вокруг нашей планеты образовалось мощное магнитное поле, она обрела защиту от проникающей радиации. Губительный для всего живого солнечный ветер огибает Землю вдоль линий магнитного поля. На поверхность планеты попадает незначительная часть тяжелых альфа-частиц. Они представляют опасность только при длительном пребывании на солнце без защиты. Из-за этого возникает ожог кожи.

Определенную опасность представляют объемные выбросы энергии, производимые пульсарами. Эти космические объекты за одну секунду производят столько энергии, сколько Солнце вырабатывает за тысячу лет. От такого луча земная атмосфера не спасает.

Определенное влияние на формирование радиационного фона играет рельеф местности и состав грунта. Наиболее древней горной породой, сформировавшейся миллиарды лет назад, является гранит. Там, где этот минерал выходит на поверхность или находится под тонким слоем почвы, отмечается повышенный уровень радиации.

На уровень излучения влияет и высота над уровнем моря. С каждым километром подъема над землей уменьшается толщина защитного слоя атмосферы. Уже на высоте 10000 метров присутствует такой радиационный фон, норма которого близка к предельно допустимой.

В зависимости от географического положения меняется уровень радиации. На полюсах он значительно сильнее, чем на экваторе. Это явление обуславливается формой магнитного поля Земли, которое сходится на полюсах.

Характеристика грунта. Наибольший уровень радиации наблюдается в местах, где залегает урановая руда. Даже если месторождение этого химического элемента находится в нескольких километрах под землей, уровень его излучения может превышать предельно допустимый в разы. Небольшой фон могут создать железная руда и бокситы. Эти элементы имеют свойство накапливать радиацию.

Искусственная радиация на земле

Это явление представляет собой превышение естественного природного фона вследствие деятельности человека. История освоения атома начитывает несколько десятилетий. Поскольку эта область промышленности еще до конца не освоена, риск возникновения нештатных ситуаций достаточно велик.

Нормы радиационного фона могут быть превышены по таким причинам:

  1. Проведение испытаний ядерного оружия. Территория, где проводились испытания атомных бомб, насыщена радиоактивными изотопами. Она будет непригодна для жизни еще многие столетия.
  2. Использование атома в мирных целях. Ядерные заряды использовались для изменения русла рек, создания искусственных водоемов и для ликвидации пожаров на газовых месторождениях.
  3. Аварии на объектах атомной энергетики. Во время подобных инцидентов происходит выброс изотопов в атмосферу. В зависимости от масштаба аварии прилегающая территория становится непригодной для жизни на срок от 30 до 10000 лет.
  4. Происшествия во время транспортировки и захоронения ядерного топлива и отходов. В результате зараженный изотопами материал разносится по обширной территории.

В зависимости от степени радиоактивного заражения местности пребывание на ней может быть ограничено по времени или запрещено полностью.

Последствия радиоактивного заражения

Уровень радиации измеряется в количестве изотопов, полученных за единицу времени. Мощность излучения определяется в рентгенах в час, полученная доза вычисляется суммированием всех показателей за год. Эта составляющая измеряется в греях (Гр).

В зависимости от объема поглощенных организмом изотопов человек может получить лучевую болезнь:

  1. I степень. Заболевание не представляет опасности для человека при условии его эвакуации из зараженной зоны. Оно проявляется в виде слабости, головной боли, нарушении сна и аппетита. При получении дозы до 2 Гр выздоровление может наступить уже через полтора-два месяца.
  2. II степень. В случае получения дозы до 4 Гр наступает поражение средней тяжести. Больной испытывает острые боли, у него нарушается деятельность внутренних органов и центральной нервной системы. Внешне болезнь проявляется выпадением волос, зубов и образованием язв. Даже квалифицированное лечение не дает полного выздоровления.
  3. III степень. Доза 4-6 Гр вызывает необратимые процессы в организме человека. Болезнь тяжелой формы приводит к отказу внутренних органов и некрозу мягких тканей. Как правило, при сопутствующей потере иммунитета заболевание приводит к летальному исходу.
  4. IV степень. Тяжелая форма развивается при получении больным более 6 Гр. Описать симптомы, которые испытывают пациенты, не представляется возможным, так как их смерть наступала в считанные часы после облучения. Летальному исходу предшествовало полное нарушение структуры мягких тканей, остановка сердца и прекращение дыхания.

Лучевой травмой считается получение человеком дозы, величина которой составляет менее 1 Гр.

Действующие нормы радиационного фона

Нормы радиации являются усредненными, полученными по результатам клинических исследований больных, получивших дозы радиации различного уровня. Полученные суммарные дозы люди могут получать за разные промежутки времени. Чем больше сила излучения, тем опаснее могут быть последствия и сложнее лечение. Поэтому и определение, что такое нормальный радиационный фон, устанавливается на законодательном уровне и является величиной для регламентирования условий проживания или труда на предприятии.

Правила радиационной безопасности касаются таких категорий граждан:

  • военнослужащие, проходящие службу на атомных подводных лодках и надводных кораблях;
  • персонал АЭС;
  • люди, проживающие на территории с высоким радиационным фоном;
  • профессиональные спасатели и работники аварийных бригад, работающие на объектах атомной энергетики;
  • работники медицины, которые имеют дело с приборами, содержащими радиоактивные элементы;
  • ученые, работающие с радиоактивным материалом.

Согласно проведенным исследованиям, абсолютно безопасной для здоровья взрослого человека считается излучение мощностью 20 микрорентген в час.

Предельной границей радиации считается значение, равное 50 микрорентген в час. Однако, если в течение года, получая через равные промежутки времени небольшие дозы излучения, человек получит суммарно 1 рентген, то это будет для него практически безопасно. Радиация постепенно из организма выводится. Действующие сегодня нормы радиоактивной безопасности определяют предельную дозу полученного за жизнь облучения в пределах 60-70 рентген.

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

Мощность дозы естественного радиоактивного фона на территории РФ составляет 0,01–0,02 мР/ч.

Согласно Федеральному закону «О радиационной безопасности населения» № 3-ФЗ от 9 января 1996 г. и поправке к ст. 9 от 1999 г. с января 2000 года для населения средняя годовая эффективная доза равна 0,001 зиверта или эффективная доза за период жизни (70 лет) – 0,07 зиверта; в отдельные годы допустимы бо́льшие значения эффективной дозы при условии, что средняя годовая эффективная доза, исчисленная за пять последовательных лет, не превысит 0,001 зиверта.

После Чернобыльской аварии в РФ установлены следующие допустимые пределы радиационного фона:

15–19 мР/ч (миллирентген в час) – безопасно;

20–60 мР/ч – относительно безопасно;

61–120 мР/ч – зона повышенного внимания;

121 мР/ч и более – опасная зона.

Международная комиссия по радиационной защите (МКРЗ) рекомендует считать предельно допустимую дозу (ПДД) разового аварийного облучения – 25 бэр; ПДД профессионального хронического облучения – до 5 бэр в год; для ограниченных групп населения – 0,5 бэр. Генетически значимые дозы для населения находятся в пределах 7–55 мбэр/год.

Доза облучения может быть однократной и многократной. Однократным считается облучение, полученное за первые четверо суток. Если продолжительность облучения превышает этот срок, то оно считается многократным.

При облучении человека дозой менее 100 бэр отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении вегетативных функций.

При дозах более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения.

Аварии на радиационно-опасных объектах и их классификация

Радиационная авария – это происшествие, вызванное неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами приводящее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) РОО в количествах, превышающих установленные нормы безопасности.

Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, а также нарушении режимов хранения отработанных ядерных отходов, приводящие к облучению людей сверх допустимых пределов. В тяжелых случаях вследствие быстрого неуправляемого развития цепной реакции ядерная авария может приводить к ядерному взрыву малой мощности или тепловому взрыву, в результате которого происходит полное разрушению реактора или хранилища, сопровождающееся массовым облучением людей на значительной территории.

Классификация возможных аварий на РОО производится по двум признакам: по типовым нарушениям нормальной эксплуатации и по характеру последствий для персонала, населения и окружающей среды.

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на:

- проектные , то есть такие, которые могут быть предотвращены существующими (заложенными в проекте) системами безопасности,

- проектные с максимально возможными последствиями (так

называемые максимальные проектные аварии) и

- запроектные , которые не могут быть локализованы системами внутренней безопасности объекта.

Последствия первых двух не приводят к выходу радиоактивных веществ за пределы санитарно-защитной зоны и облучению населения сверх допустимых установленных норм, В случае же аварий третьего типа требуется принятие в той или иной степени мер по радиационной защите населения.

По масштабам последствий радиационные аварии делятся на:

Локальные – нарушения в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местные – нарушения в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общие – нарушения в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

В зависимости от медицинских последствий, контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп: малые, средние, большие, крупные и катастрофические .

К малым радиационным авариям относятся инциденты не связанные с серьезными медицинскими последствиями. К второй и третьей группам относятся аварии, приводящие к поражению персонала, причем для аварий второй группы характерно только внешнее, а для третьей группы – внешнее и внутреннее облучение персонала. В авариях относящихся к четвертой и пятой группы (крупные и катастрофические) поражается и население, причем в катастрофических авариях имеет место внешнее и внутреннее облучение больших контингентов населения, проживающего в одном или нескольких регионах.

Перейдем теперь к рассмотрению особенностей радиационных

аварий на конкретных радиационно-опасных объектах.

Начнем с аварий на атомных электростанциях , которые, как практически показала катастрофа на Чернобыльской атомной станции, могут привести к возникновению чрезвычайных ситуаций трансграничного (глобального) масштаба. Дополнительный материал по медицинским аспектам аварии на АЭС приведен в Приложении 2 в конце пособия.

В настоящее вpемя почти в 30 стpанах миpа эксплуатиpуется около 450 атомных энеpгоблоков общей мощностью более 350 ГВт, из них 46 – в странах СНГ. Общее количество выpабатываемой атомными станциями электpоэнеpгии в миpе составляет около 20%, в Евpопе - почти 35%.

Развитие атомной энергетики сопровождается непрерывным ростом числа возникающих на атомных станциях аварийных ситуаций. Всего с момента первой серьезной аварии на АЭС NRX в Канаде в 1952 году во всем миpе было заpегистpиpовано более 300 аваpийных ситуаций на атомных станциях.

Для классификации аварий на АЭС могут быть использованы как сформулированные выше общие классификационные градации аварий на радиационно-опасных объектах, так и специальная Международная шкала событий на АЭС (шкала INES), разработанная под эгидой МАГАТЭ в 1989 г. и введенная в действие в России с сентября 1990 г. В соответствии с этой шкалой события на АЭС условно делятся на 7 групп (уровней).

К событиям 1-3 уровней относятся происшествия (незначительные, средней тяжести и серьезные).

1 и 2 уровни – это функциональные отключения и отказы в управлении, не вызывающие непосредственного влияния на безопасность АЭС, а тем более на окружающую среду.

3 уровень – серьезное происшествие из-за отказа оборудования или ошибок эксплуатации. В окружающую среду могут быть выброшены радиоактивные вещества. При этом доза облучения вне АЭС не превышает нескольких мЗв (не более 5 годовых ПДД доз). Внутри АЭС обслуживающий персонал может быть переоблучен дозами порядка 50 мЗв. За пределами площадки не требуется принятия защитных мер.

События 4-го уровня и выше относятся к авариям, причем 4-й уровень соответствует максимальной проектной аварии. Серьезное повреждение активной зоны и физических барьеров. Облучение персонала порядка 1 Зв, приводящее к острой лучевой болезни. Выброс р/а продуктов в окружающую среду в количествах, не превышающих дозовые пределы для населения при проектных авариях.

5 уровень – авария с риском для окружающей среды. Тяжелое повреждение активной зоны и физических барьеров. Имеет место значительный выброс продуктов деления в окружающую среду, радиологически эквивалентный активностям от нескольких единиц до десятков терабеккерелей радиоактивного йода131. Возможна частичная эвакуация, необходима местная йодная профилактика.

6 уровень – тяжелая авария. По внешним последствиям характеризуется значительным выбросом РВ эквивалентным активностям от десятков до сотен терабеккерелей радиоактивного йода-131.

7 уровень - глобальная авария, сопровождающаяся выбросом РВ в окружающую среду, радиологически эквивалентным активностям от тысяч до десятков тысяч терабеккерелей радиоактивного йода-131. Наносится ущерб здоровью людей и окружающей среде на больших территориях.

В развитии аварий на АЭС можно выделить следующие фазы :

Начальная фаза – характеризуется наличием угрозы выброса радиоактивных веществ в окружающую среду. Меры защиты: оповещение об угрозе; обеспечение препаратами стабильного йода; приведение в готовность защитных сооружений; подготовка к организованной эвакуации.

Ранняя фаза – фаза острого облучения. Происходит выброс радиоактивных веществ в окружающую среду. Меры защиты: оповещение; эвакуация; ограничение питания.

Промежуточная фаза – дополнительных поступлений радиоактивных веществ в окружающую среду нет. Радиационная обстановка сформировалась полностью. Экстренные меры радиационной защиты: эвакуация; отселение; ограничение на сельскохозяйственную деятельность; ограничение рыбного производства; завоз воды и продуктов.

Последняя фаза – возвращение к нормальной деятельности.

Основным поражающим фактором крупных аварий на АЭС является радиоактивное заражение местности в результате выброса радионуклидов из активной зоны реактора в атмосферу. Кроме того, при запроектной аварии с разрушением реактора на работающую смену персонала поражающее воздействие может оказать световое излучение и проникающая радиация (нейтронное и гамма-излучение) из активной зоны. Еще одним поражающим фактором может являться ударная волна (воздушная или сейсмическая), возникающая при ядерном взрыве реактора (при тепловом взрыве ее воздействие незначительно).

Меры защиты от радиационных аварий

В случае аварии на радиационно-опасном объекте необходимые меры защиты определяются по результатам зонирования загрязненных территорий. При этом под зоной радиационной аварии понимают территорию, на которой годовая доза облучения превышает 5 мЗв.

Зонирование и комплекс защитных мероприятий в соответствующих зонах зависит от фазы радиационной аварии.

На ранней и промежуточной (средней) фазах аварии территория вокруг РОО делится на следующие зоны:

Зона отселения - доза более 50 мЗв. В этой зоне вмешательство осуществляется путем эвакуации населения.

Зона добровольного отселения – доза от 20 до 50 мЗв. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты. Оказывается помощь в добровольном переселении за пределы зоны.

Зона ограниченного проживания населения – доза от 5 до 20 мЗв. Радиационный мониторинг. Осуществляются меры по снижению доз на основе выполнения соответствующих правил поведения на загрязненной территории. Жителям и лицам, проживающим на указанной территории, разъясняется риск ущерба здоровью, обусловленный воздействием радиации.

Зона радиационного контроля - доза от 1 мЗв до 5 мЗв. (находится вне зоны радиационной аварии). Радиационный мониторинг объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения критических групп населения. Те же меры по снижению доз, что и в предыдущей зоне.

Зонирование территории вокруг РОО на последней

(восстановительной) стадии радиационной аварии

Зона отчуждения - доза более 50 мЗв. В этой зоне постоянное проживание не допускается, а хозяйственная деятельность и природопользование регулируются специальными актами. Осуществляются меры мониторинга и защиты работающих с обязательным индивидуальным дозиметрическим контролем.

Зона отселения – доза от 20 мЗв до 50 мЗв. Въезд на указанную территорию для постоянного проживания не разрешен. В этой зоне запрещается постоянное проживание лиц репродуктивного возраста и детей. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты.

Зона ограниченного проживания населения – доза от 5 мЗв до 20 мЗв. Радиационный мониторинг. Осуществляются меры по снижению доз на основе выполнения соответствующих правил поведения на загрязненной территории. Добровольный въезд на указанную территорию для постоянного проживания не ограничивается. Лицам, въезжающим на указанную территорию, разъясняется риск ущерба здоровью.

Зона радиационного контроля – доза от 1 мЗв до 5 мЗв. Радиационный мониторинг объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения групп населения. Те же меры по снижению доз, что и в зоне ограниченного проживания.

Действия населения при авариях на радиационно-опасных

Объектах

Основным способом оповещения населения об авариях на радиационно-опасных объектах является передача информации по местной теле- и радиовещательной сети с использованием установленного сигнала "Внимание всем!", при котором для привлечения внимания населения включаются электросирены, дублируемые производственными гудками и другими установленными на местах сигнальными средствами.

Если в поступившей информации отсутствуют рекомендации по действиям, следует защитить себя от внешнего и внутреннего облучения. Для этого по возможности быстро защитить органы дыхания табельными средствами защиты (респиратор, противогаз), а при их отсутствии ватно-марлевыми повязками, шарфом, платком и укрыться в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместив их в пластиковый пакет или пленку, немедленно закрыть окна, двери и вентиляционные отверстия, включить радиоприемники, телевизоры и радиорепродукторы, занять место вдали от окон, быть готовым к приему информации и указаний о действиях.

При наличии измерителя мощности дозы определить степень загрязнения квартиры.

Обязательно загерметизировать помещение и укрыть продукты питания. Для этого подручными средствами заделать щели в окнах и дверях, заклеить вентиляционные отверстия. Открытые продукты поместить в полиэтиленовые мешки, пакеты или пленку. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильники, закрываемые шкафы или кладовки.

При получении указаний по средствам массовой информации провести профилактику препаратами йода (например, йодистым калием). При их отсутствии использовать 5% раствор йода:3-5 капель на стакан воды для взрослых и 1-2 капли на 100 г жидкости для детей. Прием повторить через 6-7 часов. Следует помнить, что препараты йода противопоказаны для беременных женщин.

При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промыть.

Строго соблюдать правила личной гигиены, предотвращающие или значительно снижающие внутреннее облучение организма.

В случае загрязненности помещения защитить органы дыхания.

Помещения оставлять лишь в крайней необходимости и на короткое время. При выходе защитить органы дыхания, надеть плащ (накидку из подручных материалов) или табельные средства защиты кожи.

После возвращения переодеться.


Похожая информация.


Естественная радиоактивность присутствует повсюду. Ионизирующее излучение есть и в космосе, и на Земле с самого момента её зарождения. Даже человеческий организм немного радиоактивен, и способа избавиться от природной радиации не существует.

Основным источником природного или естественного радиационного фона считается радон, который выделяется из земной коры. Радиоактивный инертный газ задерживается в закрытых помещениях, проникая через щели в фундаментах. Также радионуклиды могут быть в кирпиче и бетоне. Радон может образовываться в процессе сжигания природного газа, он присутствует в воде артезианских скважин.

Как её не назови, но опасности для человека не представляет, так как природная радиация обычно имеет допустимые дозы облучения. Радиоактивность, созданная человеческой деятельностью, может иметь в том числе и смертельную дозу радиации.

Виды доз радиации и что такое мощность эквивалентной дозы

Понятие дозы введено для оценки степени воздействия ионизационного облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.

  • Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей Рентген (Р). 1 Кл/Г = 3876 Р.
  • Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
  • Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
  • Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
  • Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.

Допустимая доза облучения или безопасная мощность дозы

Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком. Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.

Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон. Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

Облучение подстерегает нас в самых неожиданных местах, потому так важно знать безопасную дозу радиации для человека и его организма.

Еще недавно человечеству казалось, что радиация не способна нанести большого урона человеку и его жизнедеятельности, однако, каждый, кто непосредственно сталкивался с подобным излучением, почувствовал на себе всю опасность данного процесса. Сегодня знамениты эксперименты Марии Кюри, которая контактировала с излучением на протяжении продолжительного срока.

Незнание опасности привело не только к скоропостижной и мучительной смерти великой женщины, но и к необходимости ее захоронения в полной изоляции на долгие годы. До сих пор саркофаг, в котором находится исследователь, излучает опасные дозы радиации, способные навредить человеку.

Еще один яркий пример вреда, нанесенного радиационным фоном – авария на знаменитой Чернобыльской АЭС. В апреле 1986 года во время рядовых испытаний на одном из энергоблоков, находящемся в непосредственной близости к рабочему городку Припять, произошел сильнейший взрыв, огромные дозы радиации обрушились не только на работников станции и жителей города, но и на большую часть Европы.

Сегодня, спустя несколько десятилетий, город ассоциируется с ужасом тех лет – жить здесь невозможно до сих пор из-за высокого радиационного фона, а саму станцию вынужденно упрятали в прочный стальной саркофаг.

Самым печальным является тот факт, что практически все, кто принимал непосредственное участие в ликвидации последствий аварии, скоропостижно скончались от лучевой болезни. Именно это заболевание может спровоцировать опасное излучение, а муки, в которых умирает пострадавший, напоминаю настоящее суровое наказание.

К сожалению, в то время мало кто знал, что радиация способна убить человека с такой удивительной легкостью, потому и последствия оказались весьма плачевными.

Что такое радиация?

На самом деле понятие радиации гораздо шире, чем мы привыкли думать. Ученые относя к этому термину излучения, распространяющиеся в виде элементарных частиц и квантовых потоков. Выделяется несколько видов радиации:

  1. Световая.
  2. Инфракрасная.
  3. Ультрафиолетовая.
  4. Ионизирующая.

Особенный интерес человечество проявляет к последнему виду излучения – ионизирующему. Именно оно обладает способностью проникать в клетки любого живого организма и разрушать важный элемент – белок, являющийся строительным инструментом для тканей.

Процессы, происходящие в результате подобного разрушения, могут привести не только к развитию серьезных патологий, но и к смерти живого организма, потому под словом «радиация» в современном мире понимается именно такое излучение.

Виды радиации

Большинство людей сегодня ошибочно считают, что любая радиация непременно несет за собой смертельную опасность. На деле все обстоит совершенно иначе, существует даже безопасная доза радиации для человека, не наносящая практически никакого урона при разовом воздействии. Конечно, если соприкасаться с излучением регулярно, эффект будет исключительно негативным – частицы имеют свойство скапливаться на одежде, вещах, волосах и даже коже человека.

Некоторое излучение человечество научилось использовать с целью получения собственной выгоды. Среди таких факторов применения можно отметить следующие:

  • селекция различных видов животных;
  • лечение опасных заболеваний, в том числе онкологии;
  • народное хозяйство;
  • энергетика.

Обратите внимание! Следует различать радиацию и радиоактивность. Несмотря на то что эти понятия тесно связаны между собой, разница в них очевидна. Радиация – это потоки энергии, способные существовать в открытом пространстве до соприкосновения с предметом или живым существом, а радиоактивность – это способность определенного предмета поглощать эти самые потоки.

Как было сказано выше, существует несколько видов радиационного излучения. Среди них можно выделить основные и самые распространенные:

  1. Альфа-излучение, основанное на положительно заряженных частицах с большой массой. Подобный вид излучения способен ионизировать организм, потому опасен для человека. Проникая в желудочно-кишечный тракт, частицы не распространяются по всему организму, так как восприимчивы к преградам.
  2. Бета излучение, чья проникающая способность замено выше, чем у предыдущего вида. Предотвратить облучение в этом случае поможет алюминиевый лист или деревянный саркофаг.
  3. Гамма-лучи и рентгеновское излучение – частицы, заряженные нейтрально. У них наблюдается максимальная проникающая способность, за счет чего возникает сильная опасность не только для человеческого, но и для любого другого живого организма. Защита от такого облучения состоит из создания плотного саркофага, например, созданного из стали, при этом слой должен составлять несколько сантиметров.

Помимо распределения излучений, основанного на характере лучей, существуют и другие разновидности радиации. Излучение может производиться как естественным путем, так и извлекаться в результате человеческого труда. Второй вариант чаще используется на промышленных предприятиях с целью получения энергии, и именно такой способ применялся на Чернобыльской АЭС.

Если говорить о природе, то основным источником радиационного фона на нашей планете является Солнце – звезда, находящаяся в непосредственной близости к Земле. Доза облучения, проникающая на поверхность, остается в рамках допустимого за счет озонового слоя, который эффективно поглощает лучи и не дает им уничтожить человечество.

Интересно, что даже человеческий организм, функционирующий в нормальном режиме, регулярно производи радиационные лучи, которые никак не сказываются на жизнедеятельности.

Искусственная радиация, как правило, возникает в процессе деятельности атомных электростанций, создания любого вида техники и даже ее применения. Использование радиоактивных изотопов в процессе лечения любого страшного заболевания также провоцирует появление лучей.

Обратите внимание! Отходы, регулярно выбрасываемые большинством предприятий, функционирующих на нашей планете, не только разрушают озоновый слой, но и создают повышенную радиационную опасность. Как правило, вещества, входящие в состав производственных отходов, требуют профессиональной утилизации, но предприятий, способных провести это процесс, сегодня очень мало.

Внешнее и внутреннее облучение

Помимо уже перечисленных категорий облучения, существует еще и распределение по типу облучения человека. Он напрямую зависит от вида проникновения вредного элемента в организм одним из следующих способов:

  • Вредные вещества проникают в организм через пищеварительный тракт вместе с пищей или жидкостью, что полностью связано с образом жизни или характером работы пострадавшего.
  • Излучение может проникать в организм и из внешней среды. Если человек работает на предприятии, непосредственно связанном с излучением, или проживает недалеко от подобного завода или станции, через его кожу и волосы в организм регулярно попадают вредные вещества, постепенно разрушающие строительные элементы всех систем организма.

Обратите внимание! Опасность радиационного облучения несут не только крупные предприятия, нацеленные на получение энергии или производство ресурсов, но даже простые строительные материалы, при изготовлении которых не соблюдалась или недостаточно соблюдалась технология и техника безопасности.

Дозы

Доза облучения, которая не нанесет вреда человеку, определяется не только из его индивидуальных показателей, но зависит о местности проживания человека и характера его работы. При длительном воздействии небольшого количества лучей организм начинает самостоятельную борьбу и адаптируется к условиям, тем самым защищая себя от серьезного поражения.

Величина, показывающая уровень облучения, определяется дозой, полученной за конкретный период времени.

  1. Экспозиционная доза, определяющая количество проникающих в организм гамма-лучей. Основной величиной, которая и отмечает количество, является рентген.
  2. Доза, которую смог поглотить человеческий или другой животный организм или даже предмет измеряется в так называемых «греях».
  3. Доза, допустимая для облучения организма, не влияющая на его нормальную жизнедеятельность, для каждого организма определяется в индивидуальном порядке.
  4. Полноценная доза полученного излучения рассчитывается также индивидуально и полностью зависит от продолжительности и вида облучения.

Нормы

Города и поселения, находящиеся в непосредственной близости от серьезных промышленных предприятий, регулярно находятся в опасности. Именно поэтому в таких поселениях производятся измерения радиационного фона для того, чтобы исключить возможное поражение граждан.

Средний показатель нормы составляет около пятидесяти микрорентген в час, но он может значительно меняться. Например, в зонах с повышенной радиацией нормальный показатель будет расти, а в экологически чистых зонах радиационный фон значительно уменьшается. Исследовать подобные показатели рекомендуется исходя из индивидуальных особенностей определенной территории.

Важно понимать, что при регулярном нахождении в зоне повышенного радиационного фона создается определенная опасность. Проникающие лучи воздействуют на весь человеческий организм, разрушая его структуру и препятствуя нормальному росту и развитию клеток.

Потому специалистам, работающим в зонах повышенной опасности, необходимо не только часто меняться сменами и покидать зараженное помещение, но и регулярно принимать душ, носить защитную одежду и проверять собственный радиационный фон.

Заражение

Стоит обратить внимание на то, что высокую опасность для человеческого здоровья несет не только разовое нахождение в неблагополучной зоне, но и регулярное воздействие небольшого количества гамма-лучей. Радиационным заражением принято считать облучение, которое способно нанести серьезный вред здоровью и жизни человека.

Основной группой риска являются люди, проживающие вблизи территорий, на которых происходили аварии или утечки вредоносного вещества, так как период распада у подобных элементов довольно длительный и может составлять десятки, а иногда и сотни лет.

Нормальный радиационный фон может быть нарушен в результате утечки, произошедшей при производстве или транспортировке вредного вещества, в результате техногенной катастрофы, а также при утере радиоисточников.

Обратите внимание! Самыми опасными веществами, которые могут стать причиной заражения, являются йод-131, стронций, цезий, кобальт и америций. В случае с этими веществами период полураспада может занимать от нескольких суток до нескольких лет, а в случае техногенных аварий на атомных станциях урон от выпадения подобных элементов максимален.

Видео: подробнее о радиации.

Опасные дозы

Несмотря на все меры предосторожности, которые существуют на большинстве современных предприятий, облучение радиацией до сих пор может нести смертельную опасность для людей. Убить человека за несколько дней может доза радиации, равная 15Гр, при этом она считается максимальной.

Уже на 3-4 Гр человек получает практически несовместимое с жизнью заражение, и половина пострадавших постепенно умирает. При заражении, равном 9Гр, умирает практически каждый пострадавший за редким исключением.

После подобного заражения у человека развивается лучевая болезнь, длительность которой зависит от количества лучей и вида заражения. Средняя продолжительность жизни пациентов редко достигает трех недель, хотя в истории были случаи, когда пострадавшие держались несколько месяцев. Смерть от такого заражения весьма мучительна, органы постепенно разрушаются, а первым симптомом считается общее недомогание и облысение.

Симптомы возникновения лучевой болезни полностью зависят от того, какое количество лучей попало в организм. Слабое отравление чаще всего сопровождается головокружениями, тошнотой и общим недомоганием, может проявляться рвотный позыв. При следующей степени существующие симптомы заметно усиливаются, начинается развитие патологических процессов и разрушение клеток.

Две последние стадии предполагают полное нарушение всех важных органов и их отказ, что приводит к мучительной смерти. Шансов на выздоровление у пациентов с серьезными поражениями практически нет, потому рекомендуется соблюдать все меры безопасности на предприятии и регулярно проводить проверки на радиационный фон.

Несмотря на то что такие вредные и опасные лучи нанесли непоправимый урон тысячам людей, сегодня именно они способны и спасти человеческую жизнь. Практически каждый сталкивается с рентгеновскими лучами, проходя медицинское обследование, а лечение лучами является одним из эффективных методов борьбы с онкологическими заболеваниями.

Возможно, когда-то человечество научится обращаться с опасными элементами и они станут частью повседневной жизни, но сегодня все еще важно обезопасить себя и своих близких от влияния такого негативного фактора.