Формулы падения под углом к горизонту. Свободное падение тел

До конца финального матча баскетбольного турнира Олимпиады в Мюнхене 1972-ого года оставалось 3 секунды. Американцы – сборная США — уже во всю праздновали победу! Наша команда – сборная СССР – выигрывала около 10-и очков у великой dream Team...

За несколько минут до окончания матча. Но, растеряв в концовке все преимущество, уже уступала одно очко 49:50. Дальше произошло невероятное! Иван Едешко бросает мяч из-за лицевой линии через всю площадку под кольцо американцев, где наш центровой Александр Белов принимает мяч в окружении двух соперников и вкладывает его в корзину. 51:50 – мы олимпийские чемпионы!!!

Я, будучи тогда ребенком, испытал сильнейшие эмоции – сначала разочарование и обиду, затем сумасшедший восторг! Эмоциональная память об этом эпизоде врезалась в мое сознание на всю жизнь! Посмотрите видео в Интернете по запросу «золотой бросок Александра Белова», не пожалеете.

Американцы тогда не признали поражения и отказались от получения серебряных медалей. Возможно ли за три секунды сделать то, что совершили наши игроки? Вспомним физику!

В этой статье мы рассмотрим движение тела, брошенного под углом к горизонту, составим в Excel программу решения этой задачи при различных сочетаниях исходных данных и попытаемся ответить на поставленный выше вопрос.

Это достаточно широко известная задача в физике. В нашем случае тело, брошенное под углом к горизонту – это баскетбольный мяч. Мы рассчитаем начальную скорость, время и траекторию полета мяча, брошенного через всю площадку Иваном Едешко и попавшего в руки Александра Белова.

Математика и физика полета баскетбольного мяча.

Представленные ниже формулы и расчет в excel являются универсальными для широкого круга задач о телах, брошенных под углом к горизонту и летящих по параболической траектории без учета влияния трения о воздух.

Расчетная схема представлена на рисунке, расположенном ниже. Запускаем программу MS Excel или OOo Calc.

Исходные данные:

1. Так как мы находимся на планете Земля и рассматриваем баллистическую задачу – движение тел в поле тяжести Земли, то первым делом запишем основную характеристику гравитационного поля – ускорение свободного падения g в м/с 2

в ячейку D3: 9,81

2. Размеры баскетбольной площадки – 28 метров длина и 15 метров ширина. Расстояние полета мяча почти через всю площадку до кольца от противоположной лицевой линии по горизонтали x в метрах впишем

в ячейку D4: 27,000

3. Если принять, что бросок Едешко совершил с высоты около двух метров, а Белов поймал мяч как раз где-то на уровне кольца, то при высоте баскетбольного кольца 3,05 метра расстояние между точками вылета и прилета мяча составит по вертикали 1 метр. Запишем вертикальное перемещение y в метрах

в ячейку D5: 1,000

4. По моим замерам на видеозаписи угол вылета мяча α 0 из рук Едешко не превышал 20°. Введем это значение

в ячейку D6: 20,000

Результаты расчетов:

Основные уравнения, описывающие движение тела, брошенного под углом к горизонту без учета сопротивления воздуха:

x =v 0 *cosα 0 *t

y =v 0 *sinα 0 *t -g *t 2 /2

5. Выразим время t из первого уравнения, подставим во второе и вычислим начальную скорость полета мяча v 0 в м/с

в ячейке D8: =(D3*D4^2/2/COS (РАДИАНЫ(D6))^2/(D4*TAN (РАДИАНЫ (D6)) -D5))^0,5 =21,418

v 0 =(g *x 2 /(2*(cos α 0 ) 2 *(x *tg α 0 -y )) 0,5

6. Время полета мяча от рук Едешко до рук Белова t в секундах рассчитаем, зная теперь v 0 , из первого уравнения

в ячейке D9: =D4/D8/COS (РАДИАНЫ(D6)) =1,342

t = x /(v 0 * cos α 0 )

7. Найдем угол направления скорости полета мяча α i в интересующей нас точке траектории. Для этого исходную пару уравнений запишем в следующем виде:

y =x *tg α 0 -g *x 2 /(2* v 0 2 *(cos α 0 ) 2)

Это уравнение параболы – траектории полета.

Нам необходимо найти угол наклона касательной к параболе в интересующей нас точке – это и будет угол α i . Для этого возьмем производную, которая представляет собой тангенс угла наклона касательной:

y’ =tg α 0 -g *x /(v 0 2 *(cos α 0 ) 2)

Рассчитаем угол прилета мяча в руки Белова α i в градусах

в ячейке D10: =ATAN (TAN (РАДИАНЫ(D6)) -D3*D4/D8^2/COS (РАДИАНЫ (D6))^2)/ПИ()*180 =-16,167

α i = arctg y ’ = arctg (tg α 0 — g * x /(v 0 2 *(cos α 0 ) 2))

Расчет в excel, в принципе, закончен.

Иные варианты расчетов:

Используя написанную программу, можно быстро и просто при других сочетаниях исходных данных произвести вычисления.

Пусть, даны горизонтальная x = 27 метров, вертикальная y = 1 метр дальности полета и начальная скорость v 0 = 25 м/с.

Требуется найти время полета t и углы вылета α 0 и прилета α i

Воспользуемся сервисом MS Excel «Подбор параметра». Я неоднократно в нескольких статьях блога подробно рассказывал, как им пользоваться. Детальнее об использовании этого сервиса можно почитать .

Устанавливаем в ячейке D8 значение 25,000 за счет изменения подбором значения в ячейке D6. Результат на рисунке внизу.

Исходные данные в этом варианте расчета в excel (как, впрочем, и в предыдущем) выделены синими рамками, а результаты обведены красными прямоугольными рамками!

Устанавливая в таблице Excel некоторое интересующее значение в одной из ячеек со светло-желтой заливкой за счет подбора измененного значения в одной из ячеек со светло-бирюзовой заливкой, можно получить в общем случае десять различных вариантов решения задачи о движении тела, брошенного под углом к горизонту при десяти разных наборах исходных данных!!!

Ответ на вопрос:

Ответим на вопрос, поставленный в начале статьи. Мяч, посланный Иваном Едешко, долетел до Белова по нашим расчетам за 1,342с. Александр Белов поймал мяч, приземлился, подпрыгнул и бросил. На все это у него было «море» времени – 1,658с! Это действительно достаточное с запасом количество времени! Детальный просмотр по кадрам видеозаписи подтверждает вышесказанное. Нашим игрокам хватило трех секунд, чтобы доставить мяч от своей лицевой линии до щита соперников и забросить его в кольцо, вписав золотом свои имена в историю баскетбола!

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!


Обновлено:

На нескольких примерах (которые я изначально решал, как обычно, на otvet.mail.ru) рассмотрим класс задач элементарной баллистики: полет тела, запущенного под углом к горизонту с некоторой начальной скоростью, без учета сопротивления воздуха и кривизны земной поверхности (то есть направление вектора ускорения свободного падения g считаем неизменным).

Задача 1. Дальность полета тела равна высоте его полета над поверхностью Земли. Под каким углом брошено тело? (в некоторых источниках почему-то приведен неправильный ответ - 63 градуса).

Обозначим время полета как 2*t (тогда в течение t тело поднимается вверх, и в течение следующего промежутка t - спускается). Пусть горизонтальная составляющая скорости V1, вертикальная - V2. Тогда дальность полета S = V1*2*t. Высота полета H = g*t*t/2 = V2*t/2. Приравниваем
S = H
V1*2*t = V2*t/2
V2/V1 = 4
Отношение вертикальной и горизонтальной скоростей есть тангенс искомого угла α, откуда α = arctan(4) = 76 градусов.

Задача 2. Тело брошено с поверхности Земли со скоростью V0 под углом α к горизонту. Найти радиус кривизны траектории тела: а) в начале движения; б) в верхней точке траектории.

В обоих случая источник криволинейности движения - это гравитация, то есть ускорение свободного падения g, направленное вертикально вниз. Все что здесь требуется - найти проекцию g, перпендикулярную текущей скорости V, и приравнять ее центростремительному ускорению V^2/R, где R - искомый радиус кривизны.

Как видно из рисунка, для начала движения мы можем записать
gn = g*cos(a) = V0^2/R
откуда искомый радиус R = V0^2/(g*cos(a))

Для верхней точки траектории (см. рисунок) имеем
g = (V0*cos(a))^2/R
откуда R = (V0*cos(a))^2/g

Задача 3. (вариация на тему) Снаряд двигался горизонтально на высоте h и разорвался на два одинаковых осколка, один из которых упал на землю через время t1 после взрыва. Через какое время после падения первого осколка упадёт второй?

Какую бы вертикальную скорость V ни приобрел первый осколок, второй приобретет ту же по модулю вертикальную скорость, но направленную в противоположную сторону (это следует из одинаковой массы осколков и сохранения импульса). Кроме того, V направлена вниз, поскольку иначе второй осколок прилетит на землю ДО первого.

h = V*t1+g*t1^2/2
V = (h-g*t1^2/2)/t1
Второй полетит вверх, потеряет вертикальную скорость через время V/g, и затем через такое же время долетит вниз до начальной высоты h, и время t2 его задержки относительно первого осколка (не время полета от момента взрыва) составит
t2 = 2*(V/g) = 2h/(g*t1)-t1

дополнено 2018-06-03

Цитата:
Камень брошен со скоростью 10 м/с под углом 60° к горизонту. Определить тангенциальное и нормальное ускорение тела спустя 1,0 с после начала движения, радиус кривизны траектории в этот момент времени, длительность и дальность полета. Какой угол образует вектор полного ускорения с вектором скорости при t = 1,0 с

Начальная горизонтальная скорость Vг = V*cos(60°) = 10*0.5 = 5 м/с, и она не меняется в течение всего полёта. Начальная вертикальная скорость Vв = V*sin(60°) = 8.66 м/с. Время полёта до максимально высокой точки t1 = Vв/g = 8.66/9.8 = 0.884 сек, а значит длительность всего полёта 2*t1 = 1.767 с. За это время тело пролетит по горизонтали Vг*2*t1 = 8.84 м (дальность полёта).

Через 1 секунду вертикальная скорость составит 8.66 - 9.8*1 = -1.14 м/с (направлена вниз). Значит угол скорости к горизонту составит arctan(1.14/5) = 12.8° (вниз). Поскольку полное ускорение здесь единственное и неизменное (это ускорение свободного падения g , направленное вертикально вниз), то угол между скоростью тела и g в этот момент времени составит 90-12.8 = 77.2°.

Тангенциальное ускорение - это проекция g на направление вектора скорости, а значит составляет g*sin(12.8) = 2.2 м/с2. Нормальное ускорение - это перпендикулярная к вектору скорости проекция g , она равна g*cos(12.8) = 9.56 м/с2. И поскольку последнее связано со скоростью и радиусом кривизны выражением V^2/R, то имеем 9.56 = (5*5 + 1.14*1.14)/R, откуда искомый радиус R = 2.75 м.

Пусть тело брошено под углом α к горизонту со скоростью . Как и в предыдущих случаях, будем пренебрегать сопро­тивлением воздуха. Для описания движения необходимо выбрать две оси координат - Ох и Оу (рис. 29).

Рис.29

Начало отсчета совместим с начальным положением тела. Проекции начальной скорости на оси Оу и Ох: , . Проекции ускорения: ,

Тогда движение тела будет описываться уравнениями:

(8)

(9)

Из этих формул следует, что в горизонтальном направлении тело движется равномерно, а в вертикальном - равноускоренно.

Траекторией движения тела будет парабола. Учитывая, что в верхней точке параболы , можно найти время подъема тела до верхней точки параболы:


Подставив значение t 1 в уравнение (8), найдем максимальную высоту подъема тела:

Максимальная высота подъема тела.

Время полета тела находим из условия, что при t=t 2 координата у 2 =0. Следовательно, . Отсюда, - время полета тела. Сравнивая эту формулу с формулой (10), видим, что t 2 =2t 1 .

Время движения тела с максимальной высоты t 3 =t 2 -t 1 =2t 1 -t 1 =t 1 . Следовательно, сколько времени тело поднимается на максимальную высоту, столько времени оно опускается с этой высоты. Подставляя в уравнение координаты х (6) значение времени t 2 , найдем:


- дальность полета тела.

Мгновенная скорость в любой точке траектории направлена по касательной к траектории (см. рис. 29), модуль скорости определяется по формуле

Таким образом, движение тела, брошенного под углом к горизонту или в горизонтальном направлении, можно рассматривать как результат двух независимых движений - горизонтального равномерного и вертикального равноускоренного (свободного падения без начальной скорости или движения тела, брошенного вертикально вверх).

Рассмотрим, что может быть целью кинематических задач.

1. Нас может интересовать изменение кинематических величин в процессе движения , т.е. получение сведений об изменении координат, скорости, ускорения, а также соответствующих угловых величин.

2. В ряде задач, например, в задаче о движении тела под углом к горизонту, требуется узнать о значениях физических величин в конкретных состояниях : дальности полета, наибольшей величине подъема и т.д.

3. В случаях, когда тело одновременно участвует в нескольких движениях (например, качение шара) или рассматривается относительное движение нескольких тел, возникает необходимость установить соотношения между перемещениями, скоростями и ускорениями (линейными и угловыми), т.е. найти уравнения кинематической связи .

Несмотря на большое разнообразие задач по кинематике, можно предложить следующий алгоритм их решения:

1. Сделать схематический рисунок, изобразив начальное положение тел и их начальное состояние, т.е. и .

2. Выбрать систему отсчета на основании анализа условия задачи. Для этого нужно выбрать тело отсчета и связать с ним систему координат, указав начало отсчета координат, направление осей координат, момент начала отсчета времени. При выборе положительных направлений руководствуются направлением движения (скорости) или направлением ускорения.

3. Составить на основании законов движения систему уравнений в векторном виде для всех тел, а затем в скалярной форме, спроецировав на координатные оси эти векторные уравнения движения. При записи этих уравнений следует обратить внимание на знаки "+" и "-" проекций входящих в них векторных величин.

4. Ответ необходимо получить в виде аналитической формулы (в общем виде), а в конце произвести числовые расчеты.

Пример 4. Сколько времени пассажир, сидящий у окна поезда, который идет со скоростью 54 км/ч, будет видеть проходящий мимо него встречный поезд, скорость которого 36 км/ч, а длина 250 м?

Решение. Неподвижную систему отсчета свяжем с Землей, подвижную – с поездом, в котором находится пассажир. Согласно закону сложения скоростей , где - скорость встречного поезда относительно первого. В проекциях на ось Ох:

Так как путь, пройденный встречным поездом относительно первого, равен длине поезда, то время

Пример 5. Пароход идет от Нижнего Новгорода до Астрахани 5,0 суток, а обратно - 7,0 суток. Как долго будет плыть плот от Нижнего Новгорода до Астрахани? Стоянки и задержки в движении исключить.

Дано: t 1 =5 сут, t 2 =7 сут.

Решение. Неподвижную систему отсчета свяжем с берегом, подвижную – с водой. Будем считать, что скорость воды на всем пути одинакова и скорость парохода относительно воды постоянна и равна модулю мгновенной скорости парохода относительно воды.

Так как плот движется относительно берега со скоростью течения реки , то время его движения , где s – расстояние между городами. При движении парохода по течению его скорость согласно закону сложения скоростей , или в проекциях на ось Ох:

где - скорость парохода относительно берега, - скорость парохода относительно реки.

Зная время движения, можно найти скорость:

Из формул (1) и (2) имеем:

При движении парохода против течения , или в проекциях на ось Ох , где - скорость парохода относительно берега.

С другой стороны, . Тогда

Решая систему уравнений (3) и (4) относительно , получим:

Найдем время движения плота:

Пример 6. При равноускоренном движении тело проходит за два первых равных последовательных промежутка времени по 4,0 с каждый пути s 1 = 24 м и s 2 =64 м соответственно. Определите начальную скорость и ускорение тела.

Дано: t 1 =t 2 = 4,0 с, s 1 =24 м, s 2 = 64 м.

Решение. Запишем уравнения пути для s 1 и (s 1 +s 2) соответственно. Так как начальная скорость в этом случае одинакова, то

Так как t1=t2, то

Выразив из (1) и подставив ее в (2), получим:

Тогда начальная скорость

Пример 7. Автомобиль, двигаясь по прямолинейной траектории равноускоренно с начальной скоростью 5,0 м/с, прошел за первую секунду путь, равный 6,0 м. Найдите ускорение автомобиля, мгновенную скорость в конце второй секунды и перемещение за 2,0 с.

Решение. Зная путь, пройденный телом за первую секунду, можно найти ускорение:

Скорость в конце второй секунды найдем по формуле


Пример 8. х ) имеет вид x = A + Bt + Ct 3 , где А=4 м, В=2м/с, С=-0,5 м/с 3 .

Для момента времени t 1 =2 c определить: 1) координату точки х 1 точки; 2) мгновенную скорость v 1 ; 3) мгновенное ускорение а 1 .

Дано: x = A + Bt + Ct 3 , А=4 м, В=2 м/с, С=-0,5 м/с 3 , t 1 =2 c.

Найти: х 1 ; v 1 ; а 1 .

Решение. 1.Подставим в уравнение движения вместо t заданное значение времени t 1: x 1 = A + Bt 1 + Ct 1 3 . Подставим в это выражение значения А, В, С, t 1 и произведем вычисления: х 1 = 4 м.

2. Мгновенная скорость: Тогда в момент времени t 1 мгновенная скорость v 1 = B + 3Ct 1 2 . Подставим сюда значения В,С, t 1: v 1 = – 4 м/с. Знак минус указывает на то, что в момент времени t 1 =2 c точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение: Мгновенное ускорение в момент времени t 1 равно а 1 = 6Сt 1 . Подставим значения С, t 1: а 1 = –6 м/с 2 . Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 9. Кинематическое уравнение движения материальной точки по прямой (ось х ) имеет вид х = A + Bt + Ct 2 , где А=5 м, В=4м/с, С= -1м/с 2 . Определить среднюю скорость v хср за интервал времени от t 1 =1 c до t 2 =6 c.

Дано: х = A + Bt + Ct 2 , А=5м, В=4м/с, С=- 1м/с 2 , t 1 =1 c , t 2 =6 c.

Найти: v хср -? а хср -?

Решение. Средняя скорость за интервал времени t 2 -t 1 определяется выражением v ср =(х 2 -х 1)/(t 2 - t 1).

х 1 = A + Bt 1 + Ct 1 2 = 8 м, х 2 = A + Bt 2 + Ct 2 2 = –7 м.

Подставим значения х 1 , х 2 , t 1 , t 2 и произведем вычисления: v хср = -3 м/с.

Пример 10. Из вертолета, находящегося на высоте h = 300 м, сбросили груз. Через какое время груз достигнет земли, если: а) вертолет неподвижен; б) вертолет опускается со скоростью v 0 =5 м/с; 3) вертолет поднимается со скоростью v 0 =5 м/с. Описать графически соответствующие движения груза в осях s(t), v(t) и a(t).

Решение. а) Груз, покинувший неподвижный вертолет, свободно падает, т.е. движется равноускоренно с ускорением свободного падения g. Время движения найдем из соотношения Откуда Графики движение объекта отмечены 1 на рисунке.

б) Движение груза, покинувшего вертолет, который опускается с постоянной скоростью v 0 =5 м/с, является равноускоренным движением с постоянным ускорением g и описывается уравнением

Подстановка численных значений дает уравнение 9,8t 2 +10t-600=0.

Отрицательный результат не имеет физического смысла, поэтому время движения t=7,57 с.

Графики движение объекта отмечены 2 на рисунке.

3) Движение груза, покинувшего вертолет, который поднимается с постоянной скоростью v 0 =5 м/с, cостоит из двух этапов. На первом этапе – груз движется равнозамедленно с постоянным ускорениемg, направленным противоположно скорости, и описывается уравнениями

В верхней точке траектории скорость становится равной нулю, поэтому

Подставляя второе уравнение системы в первое, получим

На втором этапе – свободное падение с высоты h 0 =h+h 1 =300+1,28=301,28 м.

Поскольку

Графики движение объекта отмечены 3 на рисунке.

Пример 11. С воздушного шара, опускающегося вниз с постоянной скоростью 2 м/с, бросили вертикально вверх груз со скоростью 18 м/c относительно земли. Определить расстояние между шаром и грузом в момент, когда груз достигает высшей точки своего подъема. Через какое время груз пролетит мимо шара, падая вниз.

Дано: v 01 = 2 м/с, v 02 =18 м/c

Найти: s-? τ -?

Решение. Направим ось 0Y вертикально вверх, начало совместим с точкой 0, в которой находился шар в момент бросания груза.

Тогда уравнения движения груза и воздушного шара:

Скорость движения груза изменяется по закону v 2 =v 02 – gt.

В наивысшей точке В подъема груза v 2 =0. Тогда время подъема до этой точки Координата груза в точке В

За это время воздушный шар опустился до точки А; его координата

Расстояние между точками А и В:

Через промежуток времени τ, когда камень пролетит мимо шара, координаты тел будут одинаковы: у 1С =у 2С;

Пример 12. С какой скоростью и по какому курсу должен лететь самолет, чтобы за два часа пролететь на север 300 км, если во время полета дует северо-западный ветер под углом 30 о к меридиану со скоростью 27 км/ч?

Дано: t=7,2∙10 3 c; l =3∙10 5 м; α=30° ≈ 0,52 рад; v 2 ≈7,2 м/с.

Найти: v 2 -? φ -?

Решение. Рассмотрим движение самолета в системе отсчета, связанной с землей.

Проведем ось ОХ в направлении на восток, а ось OY - на север. Тогда скорость движения самолета в выбранной системе отсчета

где v=l /t (2)

Уравнение (1) в проекции на оси

ОХ: 0=v 1 ∙sinα – v 2 ∙sinφ;

OY: v= v 2 ∙cosφ - v 1 ∙cosα, или v 1 ∙sinα = v 2 ∙sinφ, v 2 ∙cosφ=v 1 ∙cosα + v (3)

Разделив эти уравнения почленно, получим tgφ=v 1 sinα/(v 1 cosα+ v),

или с учетом (2)

tgφ=v 1 ∙sinα/(v 1 ∙cosα+ l /t);

φ=arctgv 1 ∙sinα/(v 1 ∙cosα+ l /t) ≈0,078 рад.

Возводя в квадрат правые и левые части уравнений (3) и складывая полученные уравнения, находим

v 2 2 ∙sin 2 φ + v 2 2 ∙cos 2 φ = v 1 2 sin 2 α+ (v 1 ∙cosα + v) 2 ,

откуда , или с учетом (2)

Пример 13. Тело, брошенное вертикально вверх, вернулось на землю через t=3 с. Найти высоту подъема тела и его начальную скорость.

Решение. Движение тела вверх является равнозамедленным с ускорением - g и происходит в течение времени t 1 , а движение вниз – равноускоренным с ускорением g и происходит в течение времениt 2 . Уравнения, описывающие движение на участках АВ и ВА, образуют систему:

Поскольку v B =0, то v 0 =gt 1 . Подставив v 0 в первое уравнение системы, получим . Если сравнить это выражение с третьим уравнением системы, то можно сделать вывод о том, что время подъема равно времени спуска t 1 =t 2 =t/2=1,5с. Начальная скорость и скорость при приземлении равны друг другу и составляют v 0 =v A =gt 1 =9,8∙1,5=14,7 м/с.

Высота подъема тела

Пример 14. Свободно падающее тело в последнюю секунду движения прошло половину пути. Найти высоту, с которой оно брошено и время движения.

Решение. Зависимость пройденного пути от времени для свободно падающего тела . Поскольку участок ВС, составляющие половину всего пути, пройден за время, равное 1 с, то первая половина пути АВ пройдена за время (t-1) с. Тогда движение на участке ВС может быть описано как .

Решая систему

получим t 2 -4t+2=0. Корни этого уравнения t 1 =3,41 с и t 2 =0,59 с. Второй корень не подходит, т.к. время движения, исходя из условия задачи, должно превышать одну секунду. Следовательно, тело падало в течение 3,41 с и прошло за это время путь

Пример 15. С башни высотой 25 м горизонтально брошен камень со скоростью 15 м/с.

Найти: 1) сколько времени камень будет в движении, 2) на каком расстояниион упадет на землю, 3) с какой скоростью он упадет на землю, 4) какой угол составит траектория камня с горизонтом в точке его падения на землю. Сопротивление воздуха не учитывать.

Дано: Н=25 м, v o =15 м/с

Найти: t-? s x - ? v - ? φ- ?

Решение. Перемещение брошенного горизонтально камня можно разложить на два: горизонтальное s x и вертикальное s y :

где t - время движения.

2) s x =v o t= 33,9 м;

3) v y =gt=22,1м/с;

4) sinφ= v y /v=0,827;

Пример 16. С башни высотой 25 м горизонтально со скоростью v x =10 м/c брошено тело.

Найти: 1) время t падения тела, 2) на каком расстоянии l от основания башни оно упадет, 3) скорость v в конце падения, 4) угол, который составит траектория тела с землей в точке его приземления.

Решение. Движение тела является сложным. Оно участвует в равномерном движении по горизонтали и равноускоренном с ускорением g по вертикали. Поэтому участок АВ описывается уравнениями:

Для точки А эти уравнения принимают вид:

Тогда l =10∙2,26=22,6 м, а v y =9,8∙2,26=22,15 м/с.

Поскольку , то

Угол, который траектория составляет с землей, равен углу φ в треугольнике скоростей в т. А, тангенс которого , поэтому φ=68,7°.

Пример 17. Для тела, брошенного с горизонтальной скоростью v x =10 м/с, через время t=2 с после начала движения найти: нормальное, тангенциальное и полное ускорения, а также радиус кривизны траектории в этой точке.

Решение. Вертикальная составляющая скорости v y =gt=9,8∙2=19,6 м/с

Скорость в точке А:

Векторы образуют треугольник скоростей, а векторы - треугольник ускорений. Как видно из рисунка, эти треугольники подобны, а это означает, что их стороны пропорциональны: .

Нормальное ускорение , поэтому радиус кривизны траектории

Пример 18. Мяч бросили со скоростью 10 м/с под углом 40 о к горизонту.

Найти: 1) на какую высоту поднимется мяч; 2) на каком расстоянии от места бросания мяч упадет на землю, 3) сколько времени он будет в движении.

Дано: v o =10 м/с, α=40 о.

Найти: s y - ? s x - ? t - ?

Решение. 1) Найдем наибольшую высоту s y max , на которую поднимается тело, брошенное со скоростью v o подуглом α к горизонту. Имеем (см. рис.):

v y =v o sinα – gt; (1)

s y =v o t∙sinα – gt 2 /2. (2)

В верхней точке v y = 0 и из (1) получим v o ∙sin𝛼 = gt 1 , отсюда время подъема мяча t 1 =v o ∙sinα/g. Подставляя t 1 в (2), получим

s y max = v o 2 ∙sin 2 α/(2g)= 2,1 м.

2) Найдем дальность полета s x max тела, брошенного под углом к горизонту.

Имеем: v x =v o ∙cosα, (3)

s x =v x t=v o t∙cosα. (4)

Тело упадет на горизонтальную плоскость через время t 2 =2t 1 =2v o sinα/g.

Подставляя t 2 в (4), получим s xmax = v о 2 sin2α/g= 10,0 м.

3) t 2 =2t 1 =2v o sinα/g=1,3 с.

Пример 19. Тело брошено со скоростью v 0 =10 м/с 2 под углом α=30° к горизонту. На какую высоту тело поднимется. На каком расстоянии от места бросания оно упадет на землю? Какое время он будет в движении?


Решение. Горизонтальная и вертикальная составляющие начальной скорости

Движение на участке ОА можно разложить на два простых движения: равномерное по горизонтали и равнозамедленное по вертикали:

В точке А

Тогда и

Если тело участвует одновременно в нескольких движениях, то в каждом из них оно участвует независимо от другого, следовательно, время движения на участке АВ определяется временем движения вниз – t 2 . Время движения вверх равно времени движения вниз, а, значит,

При равномерном движении по горизонтали за равные промежутки времени тело проходит равные участки пути, следовательно,

Дальность полета

Высота подъема тела

Пример 20. Точка движется прямолинейно на плоскости по закону x=4(t-2) 2 . Каковы начальная скорость v 0 и ускорение точки a ? Найти мгновенную скорость точки v t =5 в начале пятой секунды движения.

Решение.

1) Т.к. v=x’, то v 0 =(4∙(t-2) 2)’=(4∙(t 2 -4t+4))’=(4t 2 -16t+16)’=8t-16

при t=0 v 0 =-16 м/с.

2) Т.к. a= , то a=(8t-16)’=8 м/с.

3) При t=4, т.к. до начала 5 с прошло 4 с.

v t =5 =8t-16=8∙4-16=32 м/с.

Ответ: Начальная скорость точки v 0 =-16 м/с, ускорение a=8 м/с, скорость точки в начале пятой секунды движения v t =5 =32 м/с.

Пример 21. Движение материальной точки описывается уравнениями: а) s=αt 3 ; б) s=αt 2 +βt. Сравните среднюю скорость и среднеарифметическую начальной и конечной скоростей v ср в интервале времени 0 - t. Здесь α и β - положительные постоянные.

Решение. Вспомним определения средней и мгновенной скорости:

Выражения для мгновенной скорости получаются путем дифференцирования уравнения движения.

Выражения для средней скорости находятся как отношение изменения криволинейной координаты к времени:

Получим выражения для среднеарифметической скорости:

Ответим на вопрос условия задачи. Видно, что в случае “а” средняя и среднеарифметическая скорости не совпадают, а в случае “б” - совпадают.

Пример 22. Материальная точка движется равномерно по криволинейной траектории. В какой точке траектории ускорение максимально?

Решение. При движении по криволинейной траектории ускорение складывается из тангенциального и нормального. Тангенциальное ускорение характеризует быстроту изменения величины (модуля) скорости. Если величина скорости не изменяется, тангенциальное ускорение равно нулю. Нормальное ускорение зависит от радиуса кривизны траектории a n =v 2 /R. Ускорение максимально в точке с наименьшим радиусом кривизны, т.е. в точке С.

Пример 23. Материальная точка движется согласно закону:

1) Определить начальную координату, начальную скорость и ускорение путем сравнения с законом движения с постоянным ускорением. Записать уравнение для проекции скорости.

Решение. Закон движения с постоянным ускорением имеет вид

Сравнивая это уравнение с уравнением условия задачи, получаем

x 0 = - 1 м,

v 0 x = 1 м/с,

a x = - 0,25 м/с 2 .

Возникает вопрос: какой смысл имеет знак “минус”? Когда проекция вектора отрицательна? Только в том случае, когда вектор направлен против оси координат.

Изобразим на рисунке начальную координату, векторы скорости и ускорения.

Запишем уравнение для скорости в виде

и подставим в него полученные данные (начальные условия)

2) Найти зависимость скорости и ускорения от времени, применяя определения этих величин.

Решение. Применим определения для мгновенных значений скорости и ускорения:

Производя дифференцирование, получим v x =1-0,25t, a x = - 0,25 м/с 2 .

Видно, что ускорение не зависит от времени.

3) Построить графики v х (t) и a х (t). Охарактеризовать движение на каждом участке графика.

Решение. Зависимость скорости от времени - линейная, график представляет собой прямую линию.

При t = 0 v х = 1 м/с. При t = 4 с v х = 0.

Из графика видно, что на участке “а” проекция скорости положительная, а ее величина убывает, т.е. точка движется замедленно в направлении оси х. На участке “b” проекция скорости отрицательная, а ее модуль возрастает. Точка движется ускоренно в направлении, противоположном оси х. Следовательно, в точке пересечения графика с осью абсцисс происходит поворот, изменение направления движения.

4) Определить координату точки поворота и путь до поворота.

Решение. Еще раз отметим, что в точке поворота скорость равна нулю. Для этого состояния из уравнений движения получаем:

Из второго уравнения получаем t пов = 4 с. (Видно, чтобы получить это значение не обязательно строить и анализировать график). Подставим это значение в первое уравнение: x пов =-1+4-4 2 /8 = 1 м. Изобразим, как двигалась точка.

Путь до поворота, как видно из рисунка, равен изменению координаты: s пов =x пов -x 0 =1-(-1)=2 м.

5) В какой момент времени точка проходит через начало координат?

Решение. В уравнении движения следует положить х = 0. Получаем квадратное уравнение 0=-1+t-t 2 /8 или t 2 -8t+8=0. У этого уравнения два корня: . t 1 = 1,17 с, t 2 = 6,83 с. Действительно, точка проходит через начало координат два раза: при движении “туда” и “обратно”.

6) Найти путь, пройденный точкой за 5 секунд после начала движения, и перемещение за это время, а также среднюю путевую скорость на этом участке пути.

Решение. Прежде всего найдем координату, в которой оказалась точка после 5 секунд движения и отметим ее на рисунке.

x(5)=-1+5-5 2 /8= 0,875 м.

Поскольку в данном состоянии точка находится после поворота, то пройденный путь уже не равняется изменению координаты (перемещению), а складывается из двух слагаемых: пути до поворота

s 1 = x пов - x 0 = 1 - (-1) = 2 м

и после поворота

s 2 = x пов - x(5) = 1 - 0,875 = 0,125 м,

s = s 1 + s 2 = 2,125 м.

Перемещение точки равно

s х = x(5) - x 0 = 0,875 - (-1) = 1,875 м

Средняя путевая скорость вычисляется по формуле

В рассмотренной задаче описан один из наиболее простых видов движения - движение с постоянным ускорением. Тем не менее, данный подход к анализу характера движения является универсальным.

Пример 24. При одномерном движении с постоянным ускорением зависимости координаты и скорости частицы от времени описываются соотношениями:

Установить связь между координатой частицы и ее скоростью.

Решение. Из этих уравнений исключаем время t. Для этого используем метод подстановки. Из второго уравнения выражаем время и подставляем в первое уравнение:

Если движение начинается из начала координат (х 0 =0) из состояния покоя (v 0 x =0), то полученная зависимость принимает вид

хорошо знакомый из школьного курса физики.

Пример 25. Движение материальной точки описывается уравнением: , где i и j - орты осей х и у, α и β - положительные постоянные. В начальный момент времени частица находилась в точке х 0 =у 0 =0. Найти уравнение траектории частицы у(х).

Решение. Условие задачи сформулировано с применением векторного способа описания движения. Перейдем к координатному способу. Коэффициенты при единичных векторах представляют собой проекции вектора скорости, а именно:

Вначале получим зависимости x(t) и y(t), решая задачу первого класса.

Пример 28. С башни высотой h бросили камень со скоростью v 0 под углом α к горизонту. Найти:

1) какое время камень будет в движении;

2) на каком расстоянии s он упадет на землю;

3) с какой скоростью он упадет на землю;

4) какой угол β составит траектория камня с горизонтом в точке его падения;

5) нормальное и тангенциальное ускорения камня в этой точке, а также радиус кривизны траектории;

6) наибольшую высоту подъема камня.

Сопротивлением воздуха пренебречь.

Решение. На примере этой задачи покажем, как в обобщенном виде можно установить приведенный алгоритм решения любой задачи данного класса.

1. В задаче рассматривается движение материальной точки (камня) в поле силы тяжести Земли. Следовательно, это движение с постоянным ускорением свободного падения g, направленным вертикально вниз.

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:

Кинематика - это просто!


После броска, в полете, на тело действуют сила тяжести и сила сопротивления воздуха .
Если движение тела происходит на малых скоростях, то при расчете силу сопротивления воздуха обычно не учитывают.
Итак, можно считать, что на тело действует только сила тяжести, значит движение брошенного тела является свободным падением .
Если это свободное падение, то ускорение брошенного тела равно ускорению свободного падения g .
На малых высотах относительно поверхности Земли сила тяжести Fт практически не меняется, поэтому тело движется с постоянным ускорением.

Итак, движение тела, брошенного под углом к горизонту является вариантом свободного падения, т.е. движением с постоянным ускорением и криволинейной траекторией (т.к. векторы скорости и ускорения не совпадают по направлению).

Формулы этого движения в векторном виде: Для расчета движения тела выбирают прямоугольную систему координат XOY, т.к. траекторией движения тела является парабола, лежащая в плоскости, проходящей через векторы Fт и Vo .
За начало координат обычно выбирают точку начала движения брошенного тела.


В любой момент времени изменение скорости движения тела по направлению совпадает с ускорением.

Вектор скорости тела в любой точке траектории можно разложить на 2 составляющих: вектор V x и вектор V y .
В любой момент времени скорость тела будет определяться, как геометрическая сумма этих векторов:

Согласно рисунку, проекции вектора скорости на координатные оси OX и OY выглядят так:


Расчет скорости тела в любой момент времени:

Расчет перемещения тела в любой момент времени:

Каждой точке траектории движения тела соответствуют координаты X и Y:


Расчетные формулы для координат брошенного тела в любой момент времени:


Из уравнения движения можно вывести формулы для расчета максимальной дальности полета L:

и максимальной высоты полета Н:


P.S.
1. При равных по величине начальных скоростях Vo дальность полета:
- возрастает, если начальный угол бросания увеличивать от 0 o до 45 o ,
- убывает, если начальный угол бросания увеличивать от 45 o до 90 o .

2. При равных начальных углах бросания дальность полета L возрастает с увеличением начальной скорости Vo.

3. Частным случаем движения тела, брошенного под углом к горизонту, является движение тела, брошенного горизонтально , при этом начальный угол бросания равен нулю.