Оценка метеорологических условий в производственных помещениях. Исследование метеорологических условий в производственном помещении

Некоммерческое акционерное общество

«АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ»

Кафедра Охраны труда

Дисциплина: Основы безопасности жизнедеятельности

ОТЧЁТ

по лабораторной работе №1

на тему: «Исследование метеорологических условий производственных помещений»

Специальность: 050702 – Автоматизация и Управление

Выполнили: студенты Аджи-Ходжаев М.А., Ерешкина К.А., Зарубин В.Р Группа: АИСУ-07-2

Руководитель: ст.преподаватель Приходько Н.Г.

_____________________ «____» ___________________________2010 г.

Алматы 2010

Лабораторная работа №1. Исследование метеорологических условий производственных помещений.

Цель работы: Определение параметров микроклимата в рабочей зоне и сравнение полученных данных с оптимальными нормами по ГОСТу 12.1.005-88.

Теоретические сведения

Контроль состояния микроклимата в производственных помещениях производится путем замеров параметров микроклимата в рабочей зоне с использованием следующих приборов.

Для определения температуры воздуха используется термометры 9ртутные и спиртовые), термографы, термоанемометры. При наличии тепловых излучений используются парные термометры, состоящие из 2-х термометров. У одного термометра поверхность резервуара для ртути зачернена, у другого посеребрена;

Для определения влажности используются психрометры либо без вентилятора или с вентилятором. В обоих случаях психрометр состоят из 2-х термометров – сухого и увлажненного. Увлажнение термометра осуществляется путем смачивания водой ткани, покрывающей шарик одного из термометров. В аспирационном психрометре Ассмана термометры заключены в металлическую оправу, шарики термометров находятся в двойных металлических гильзах, что позволяет использовать прибор в условиях теплового излучения, а применения вентилятора исключается влияние других потоков воздуха. На основании показаний двух термометров по эмпирической формуле вычисляют сначала абсолютную, а затем относительную влажность воздуха. Зная показания сухого и влажного термометров, можно определить относительную влажность и по номограммам.

Для определения скорости движения воздуха используются анемометры, принцип действия которых основан на определении числа оборотов вертушки, вращающейся за счет энергии воздушного потока. Крыльчатый анемометр применяется при скорости движения воздуха от 1 до 10 м/с, чашечный до 30 м/с. Скорость движения воздуха менее 1 м/с измеряется кататермометром (или термоанемометром), так как обычный анемометр в этом диапазоне дает большие отклонения от действительных значений за счет инертности механизма прибора.

Атмосферное давление не является нормируемым параметром микроклимата, однако, для расчета величин абсолютной, а затем и относительной влажности необходимо знать его значение. Для измерения атмосферного давления служат барометры-анероиды разных моделей.

Определение атмосферного давления

Определить атмосферное давление по барометру – анероиду ВАМИ, на циферблате которого вмонтирован дугообразный ртутный термометр, по показанию которого вводится поправка на температуру окружающей среды. Перед снятием показаний прибора для устранения влияния в механизме необходимо слегка постучать по корпусу прибора. Во избежание искажений при отсчете, глаз наблюдателя должен быть расположен перпендикулярно плоскости прибора. После снятия показаний необходимо учесть 3 поправки: шкаловую, температурную и добавочную, т.е.

Поправка на шкалу прибора приведена в таблице 1

Таблица 1 – Поправка на шкалу прибора

Температурная поправка определяется по формуле

Где ∆Р - температурная поправка на 1ºС (∆Р=0,06 мм. рт.ст.); t – температура по термометру барометра, снимается с точностью до десятых долей градуса.

Добавочная поправка (Рдоб) по поверочному свидетельству прибора принимается равным 13 мм.рт.ст.

Пример: По барометру-анероиду сняты показания Рпр=694 мм.рт.ст. и температура 23 ºС. Шкаловая поправка(Ршк) в соответствии с табл.1 составит (-1,15) мм.рт.ст., температурная поправка Ртемп=∆Р*t=0,06*23=1,38 мм.рт.ст., добавочная поправка Рдоб=13 мм.рт.ст. Тогда Р=694-1,15+1,38+13=707,23 мм.рт.ст. Возникает необходимость перевода мм.рт.ст. в Па, надо учитывать, что 1 мм.рт.ст.=133,322 Па. Вычисленное значение атмосферного давления заносится в табл. 2 протокола исследований.

Определение температуры воздуха

Определить температуру воздуха в лаборатории, пользуясь сухим термометром психрометра Ассмана. Показания записать в табл. 2, 4 протокола исследований.

Определение относительной влажности воздуха

Рассчитать значение относительной влажности воздуха в лаборатории, используя аспирационный психрометр Ассмана. Для этого за 3-4 мин до снятия показаний сухого и влажного термометров смачивают вату на резервуаре влажного термометра, вводя воду снизу, пользуясь пипеткой, находящейся на стенде. Включают вентилятор и через 3 мин работы выключают. Одновременно снимают показания сухого и влажного термометров, которые записывают в табл.2 протокола.

Определение скорости движения воздуха

Определение скорости движения воздуха под воздушном душировании. Это производится путем сопоставления двух отчетов по циферблату анемометру – до начала опыта и после опыта. Разность между этими отсчетами делят на время проведения опыта и затем графику определяют фактическую скорость движения воздуха. Анемометр расположен на стенде в аэродинамической трубе, где поток воздуха создается вентилятором. Для включения необходимо переключатель на стенде повернуть в положение 1. Заметно в отчет, включают стрелки прибора и секундомер, фиксируют второй отсчет. Для получения более точных результатов обычно делают 3 замера (по 100 с), вычисляют разницу в показаниях счетчика, результаты складывают и делят на сумму времени проведения всех трех замеров. Затем по тарировочную графику среднее число делений в секунду переводят в скорость, измеряемую в м/с. Полученные данные заносят в табл. 3,4 протокола.

Определение санитарно-гигиенической оценки микроклимата

Дать санитарно-гигиеническую оценку микроклимата в лаборатории. Для этого из действующего ГОСТ-12.1.005-88 в табл 4 протокола внести значения оптимальных параметров микроклимата для данной категории работ и периода года и те фактические параметры, которые определены в процессе работы. На основании сопоставления делают выводы и предложения о мерах создания благоприятного микроклимата.

Таблица 3 – Определение скорости движения воздуха

Таблица 4 – Сравнение полученных данных с ГОСТ-12.1.005-88

Затем вычисляют абсолютную владность (А), т.е. количество водяных паров, которое содержится в воздухе в момент исследования, выраженное в весовых единицах (г/м) или как давление водяных паров в мм.рт.ст.

Где Fвл – давление насыщенных водяных паров при температуре влажного термометра, мм.рт.ст.

0,5 – постоянных психрометрический коэффициент;

tc-tвл – разница показаний сухого и влажного термометров, ºС;

Р – атмосферное давление, мм.рт.ст., рассчитанное в задании по формуле.

А=11,96-(0,5*(8,8)*707,23)/755=7,84 мм.рт.ст.

С:22,8-20,822 мм.рт.ст. - Fc

Затем рассчитывается относительная влажность воздуха (В) как отношение абсолютной влажности к максимальной (М) (наибольшее возможное количество водяных паров в воздухе при данной температуре), выраженное в процентах

Где Fс – давление насыщенных водяных паров при температуре сухого термометра.

В=А/Fc*100%=7,84/20,822=37,7%

Затем определяют относительную влажность по психометрическому графику номограмме, приведенному на столе. Вертикальные линии на графике соответствуют показаниям сухого термометра, а наклонные – влажного. Искомая относительная влажность определяется как точка пересечения вертикальной и наклонной линий, соответствующих замерам сухого и влажного термометров. Полученное значение заносят в табл.2, сравнивают с вычисленным значением В и определяют расхождение в процентах. Расхождение не должно превышать 5%.

Таблица 2 – Протокол исследование параметров микроклимата

Наименование

Значение

1.Место замера

2.Показания сухого термометра, ºС

3.Показания влажного термометра, ºС

4.Атмосферное давление Р, мм.рт.ст.

5.Давление насыщенных водяных паров при температуре сухого термометра Fc, мм.рт.ст.

6.Давление насыщенных водяных паров при температуре сухого термометра Fc, мм.рт.ст.

7.Значение абсолютной влажности А, мм.рт.ст.

8.Значение относительной влажности, В,%

9.Значение относительной влажности по номограмме,%

10.Расхождения в полученных значениях, %

Вывод

  1. Исследование и обоснование направлений увеличения прибыли "УП Витебсклифт"

    Дипломная работа >> Экономика

    Данные периодической печати. В процессе исследований , анализа и систематизации полученной информации применены... труда. Для создания оптимальных метеорологических условий труда в производственных помещениях завода осуществляются следующие мероприятия: ...

  2. Условия труда исследователей и разработчиков их совершенствование в инновационном процессе

    Курсовая работа >> Менеджмент

    ... исследования , прикладные исследования , разработки. Фундаментальные исследования – экспериментальные или теоретические исследования ... Для обеспечения нормальных метеорологических условий в производственных помещениях проводится большая исследовательская...

  3. Условие и охрана труда на предприятии

    Реферат >> Экономика

    Температура в помещениях является одним из ведущих факторов, определяющих метеорологические условия производственной среды. Высокие... должен обеспечить: 1.проведение расчетов; 2.лабораторных исследований ; 3.экспертизы с привлечением специальных экспертов; ...

Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности. Все эти факторы, или метеорологичеокие условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые -- сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних -- от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарнo-технических устройств.

Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года -- от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.

Согласно санитарным нормам проектирования промышленных предприятий (СН 245 -- 71) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м3ч, и горячие цехи, где они выше этой величины.

Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.

Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.

Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500oС спектр излучения содержит как видимые-- световые лучи, так и невидимые -- инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей. Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.

Источники тепла, имеющие температуру 2500 -- 3000o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.

Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолетовыми.

Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным. Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 -- 95% инфракрасных лучей, а поглощают всего 5 -- 6%. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 -- 96% этих лучей, поэтому нагреваются более интенсивно

При полном поглощении инфракрасных лучей в результате полного превращения лучистой энергии в тепловую облучаемый предмет получает определенное количество тепла, которое принято измерять в малых калориях на 1 см2 облучаемой поверхности в минуту (г.кал/см2.мин). Эту величину принимают за единицу интенсивности облучения. Интенсивность инфракрасного облучения возрастает по мере повышения температуры источника излучения и увеличения площади его поверхности и уменьшается в квадратной пропорции по мере удаления от источника излучения. Инфракрасное излучение, как правило, происходит от тех же источников, что и выделение конвекционного тепла.

Рабочие горячих цехов постоянно или периодически подвергаются воздействию инфракрасного излучения, в результате чего они получают извне то или иное количество тепла. Интенсивность облучения на рабочих местах в зависимости от размеров и температуры источников излучения и расстояния от него рабочих мест колеблется в широких пределах: от нескольких десятых долей до 8 -- 10 г.кал/см2.мин. При выполнении отдельных кратковременных операций интенсивность облучения достигает 13 -- 15 г.кал/см2.мин. Для сравнения следует указать, что интенсивность солнечной радиации в летний безоблачный день достигает лишь 1,3 -- 1,5 г.кал/см2.мин.

Несмотря на то, что инфракрасное излучение не оказывает прямого действия на воздух, все же косвенным путем оно способствует его нагреву. Подвергающиеся облучению различные предметы, оборудование, конструкции и даже стены нагреваются и сами становятся источниками тепловыделения как радиационным, так и конвекционным путем. От них-то и нагревается воздух цеха.

При работе с вольтовой дугой или ртутно-кварцевыми лампами, излучающими ультрафиолетовые лучи, рабочие могут подвергаться облучению, если они не защищены от прямого попадания этих лучей в глаза или на кожный покров. Ультрафиолетовые лучи хорошо проходят через воздух, но почти не проходят через любую плотную ткань; даже обычное стекло их почти не пропускает. Однако при попадании лучей от вышеуказанны источников в глаза наряду с ультрафиолетовыми лучам на них будет действовать чрезмерно яркий, слепящий свет видимого спектра.

В каждом помещении, и тем более в производственных цехах, воздух всегда находится в состоянии движения, которое создается вследствие разности температур в различных частях здания и по площади и по высоте. Разность температур образуется в результате инфильтрации и подсоса более холодного наружного воздуха через окна, фонари, фрамуги, ворота.

Более сильное движение наблюдается в тех случаях, когда в цехе имеются источники тепловыделения, которые нагревают воздух и заставляют его быстро подниматься вверх. При наличии одного источника тепловыделения направление движения воздуха будет от периферии к источнику тепла и от него вверх; при нескольких же источниках тепловыделения направление токов может быть самым разнообразным, оно зависит от мест расположения источников тепла и их мощности. Скорость движения, или, как принято называть, подвижность воздуха, измеряется в метрах в секунду.

Мощные источники тепловыделения в цехах являются причиной значительных потоков воздуха, скорость которых иногда достигает 4 -- 5 м/сек. Особенно большие скорости движения создаются вблизи открытых проемов (ворот, окон и т. п.), где имеется возможность подсоса более холодного наружного воздуха. Вследствие больших скоростей холодные струи проходят значительные расстояния без достаточного разбавления теплым воздухом цеха, обдувая рабочих и создавая резкие колебания температур, что в быту называют сквозняками.

На отдельных же участках могут создаваться неблагоприятные условия для естественного конвекционного потока. Чаще всего такое положение наблюдается на участках, удаленных от проемов, ограниченных стенами или громоздким оборудованием (печами и т. п.), и особенно там, где подъему нагретого воздуха вверх препятствуют какие-либо глухие перекрытия (потолки). Подвижность воздуха сокращается до минимальных величин (0,05 -- 0,1 м/сек), что приводит к его застою и перегреванию, особенно если участки расположены вблизи от источников тепловыделений.

Как в наружном, так и в воздухе производственных помещений содержится некоторое количество водяных паров, создавая определенную влажность воздуха. Количество водяных паров, выраженное в граммах, содержащихся в килограмме или в кубическом метре воздуха, называется абсолютной влажностью.

Увеличение количества водяных паров при одной и той же температуре может происходить лишь до определенного предела, после чего пары начинают конденсироваться. Такое состояние, когда количество водяных паров (в граммах) способно насытить 1 кг или 1 м3 воздуха при данной температуре до предела, называется максимальной влажностью. Чем выше температура воздуха, тем больше надо водяных паров, чтобы довести этот воздух до максимальной влажности. Следовательно, максимальная влажность воздуха при разных температурах различна, причем для каждой температуры эта величина постоянна.

Для измерения влажности воздуха чаще всего пользуются показателем относительной влажности, то есть отношением абсолютной влажности к максимальной, насыщаемой воздух до предела при данной температуре, выраженной в процентах. Таким образом, относительная влажность показывает процент насыщения воздуха водяными парами при данной температуре.

Помимо влагосодержания поступающего наружного воздуха, внутри цеха могут быть дополнительные источники влаговыделения. Главным образом это открытые технологические процессы, сопровождающиеся использованием воды или водных растворов, особенно если эти процессы идут с подогревом. Определенная часть влаги выделяется также от самих работающих при дыхании и потовыделении, однако практически это не играет большой роли.

В производственных условиях наблюдается весьма различная влажность воздуха -- от 5 -- 10 до 70 -- 80%, при наличии обильных влаговыделений (красильно-отбелочные цехи текстильных фабрик, моечные отделения различных производств, прачечные) -- иногда до 90-- 95%, а в холодный период года -- до 100%, то есть до туманообразования.

Метеорологические условия или микроклимат в производственных условиях определяются следующими параметрами: 1) температурой воздуха t, °С; 2) относительной влажностью φ, %; 3) скоростью движения воздуха на рабочем месте v, м/с; 4) барометрическим давлением P, мм рт. ст.

Необходимость учета этих параметров может быть объяснена на основании рассмотрения теплового баланса в организме человека.

Величина тепловыделения Q организмом человека зависит от степени физического напряжения в определенных метеорологических условиях и составляет от 75 ккал/ч (в состоянии покоя) до 400 ккал/ч (при тяжелой работе).

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для того чтобы физиологические процессы в его организме протекали нормально, выделяемое организмом тепло должно отводиться в окружающую человека среду. Соответствие между количеством этого тепла и охлаждающей способностью среды характеризует ее как комфортную. В условиях комфорта у человека не возникает беспокоящих его тепловых ощущений — холода или перегрева.

Отдача тепла организмом человека в окружающую среду происходит посредством теплопроводности через одежду QT конвекции в результате омывания воздухом тела человека Qк, излучения на окружающие поверхности Qи, испарения влаги с поверхности кожи Qисп Часть тепла расходуется на нагрев вдыхаемого воздуха QB.

Количество тепла, отдаваемое организмом человека каждым из этих путей, зависит от величины того или иного параметра микроклимата. Так, теплоотдача конвекцией зависит от температуры окружающего воздуха и скорости его движения на рабочем месте. Излучение тепла происходит в направлении окружающих человека поверхностей, имеющих более низкую температуру поверхности, чем температура поверхности одежды (27—31° С) и открытых частей тела человека (около 33,5° С). При высоких температурах окружающих поверхностей (30—35° С) теплоотдача излучением полностью прекращается, а при более высоких температурах теплообмен идет в обратном направлении — от поверхностей к человеку.

Отдача тепла испарением пота зависит от относительной влажности и скорости движения воздуха. В состоянии покоя при температуре окружающего воздуха 18° С доля QK составляет около 30% всего отводимого тепла, Qи — 45%, Qисп — 20% и QB — 5%.

При изменении температуры воздуха, скорости его движения и влажности, при наличии вблизи человека нагретых поверхностей, в условиях физической работы и т. д. эти соотношения существенно меняются.

Нормальное тепловое самочувствие (комфортные условия), соответствующее данному виду работы, обеспечивается при соблюдении теплового баланса:

Q =Qт +Qк +Qи +QИсп + Qв,

благодаря чему температура внутренних органов человека остается постоянной (около 36,6° С). Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией.

При высокой температуре воздуха в помещении кровеносные сосуды поверхности тела расширяются, при этом происходит повышенный приток крови к поверхности тела и теплоотдача в окружающую среду значительно увеличивается. Однако при температурах окружающего воздуха и ограждений порядка 30—33° С отдача тепла конвекцией и излучением в основном прекращается. При более высокой температуре воздуха большая часть тепла отдается путем испарения пота с поверхности кожи. При этом организм теряет определенное количество влаги, а вместе с ней и солей, играющих важную роль в жизнедеятельности организма. По этой причине в горячих цехах рабочим дают подсоленную воду.

При понижении температуры окружающего воздуха реакция человеческого организма иная: кровеносные сосуды кожи сужаются, приток крови к поверхности тела замедляется и отдача тепла конвекцией и излучением уменьшается.

Таким образом, для теплового самочувствия человека важно определенное сочетание температуры, относительной влажности и скорости движения воздуха.

Влажность воздуха оказывает большое влияние на терморегуляцию организма. Повышенная влажность (φ > 85%) затрудняет терморегуляцию вследствие снижения испарения пота, а слишком низкая влажность (φ < 20%) вызывает пересыхание слизистых оболочек дыхательных путей. Нормальные величины относительной влажности составляет 30—60%.

Движение воздуха в помещениях является важным фактором, влияющим на самочувствие человека. В жарком помещении движение воздуха способствует увеличению отдачи тепла организмом и улучшает его состояние, но оказывает неблагоприятное воздействие при низкой температуре воздуха в холодное время года.

Минимальная скорость движения воздуха, ощущаемая человеком, составляет 0,2 м/с. В зимнее время года скорость движения воздуха не должна превышать 0,3—0,5 м/с, а летом — 0,5—1 м/с.

В горячих цехах допускается увеличение скорости обдува рабочих (воздушное душирование) до 3,5 м/с.

Скорость воздуха оказывает также влияние на распределение вредных веществ в помещении. Воздушные потоки могут распространять их по всему объему помещения, переводить пыль из осевшего состояния во взвешенное. В ряде случаев относительно высокая скорость воздуха (более 0,3—0,5 м/с) может мешать технологическому процессу, например при сварке в среде защитных газов.

Барометрическое давление влияет на парциальное давление основных компонентов воздуха — кислорода и азота, а следовательно, и на процесс дыхания.

Жизнедеятельность человека может проходить в довольно широком диапазоне давлений порядка 550—950 мм рт. ст. Однако здесь необходимо учитывать, что для здоровья человека опасно быстрое изменение давления, а не сама величина этого давления. Например, быстрое снижение давления всего на несколько миллиметров ртутного столба по отношению к нормальной величине (РНорм = = 760 мм рт. ст.) вызывает болезненное ощущение.

При воздействии высокой температуры, интенсивного теплового излучения возможен перегрев организма, который характеризуется повышением температуры тела, обильным потовыделением, учащением пульса и дыхания, резкой слабостью, головокружением, а в тяжелых случаях — появлением судорог и возникновением теплового удара.

Особенно неблагоприятные условия наступают в том случае, когда наряду с высокой температурой в помещении наблюдается повышенная влажность, ускоряющая возникновение перегрева организма. Вследствие резких колебаний температуры в помещении, обдувания холодным воздухом (сквозняки) на производстве имеют место простудные заболевания.

В соответствии с санитарными нормами СН 245—71 устанавливаются оптимальные и допустимые метеорологические условия для рабочей зоны помещения (пространство высотой 2 м над уровнем пола или площадки, где находятся рабочие места).

Нормы учитывают:

1) время года — холодный и переходный периоды с температурой наружного воздуха ниже +10° С; теплый период с температурой +10° С и выше;

а) легкие работы (затраты энергии до 150 ккал/ч), к которым относятся, например, основные процессы точного приборостроения и машиностроения;

б) работы средней тяжести (затраты энергии от 150 до 250 ккал/ч), например, в механосборочных, механизированных литейных, прокатных, термических цехах и т. п.;

в) тяжелые работы (затраты более 250 ккал/ч), к которым относятся работы, связанные с систематическим физическим напряжением и переноской значительных (более 10 кг) тяжестей; это — кузнечные цехи с ручной ковкой, литейные с ручной набивкой и заливкой опок и т. п.;

3) характеристику помещения по теплоизбыткам — все производственные помещения делятся на помещения с незначительными избытками явного тепла, приходящимися на 1 м3 объема помещения, — 20 ккал/м3*ч и менее, и со значительными избытками — более 20 ккал/м3*ч.

К теплоизбыткам относится остаточное количество тепла, поступающего в помещение после осуществления всех технологических и строительных мероприятий по их уменьшению. Величина теплоизбытков (ккал/ч) определяется на основании баланса тепла в помещении по формуле

Qизб = ΣQ-ΣQух, (1)

где ΣQ — суммарное количество поступающего в помещение тепла (тепловыделения); ΣQух — суммарное количество уходящего из помещения тепла (за счет теплопотерь ограждениями, удаляемого местной вентиляцией, нагретым воздухом и т. п.).

В так называемых холодных цехах (механосборочные, точного машиностроения и др.) теплоизбытки составляют менее 20 ккал/м3*ч. Что же касается горячих цехов (прокатные, кузнечные, термические, литейные и т. п.), то в них теплоизбытки составляют 150— 200 ккал/м3*ч, а в ряде случаев до 300—500 ккал/м3*ч.

Основными источниками тепловыделений в машиностроении являются пламенные печи, электропечи, ванны с подогревом, кузнечные горны, нагретый металл, электрооборудование, различные нагретые поверхности, солнечная радиация. Расчет тепловыделений производят по справочникам.

С учетом перечисленных выше факторов определяют нормы температуры, относительной влажности и скорости движения воздуха. Например, для легкой работы, выполняемой в помещениях с незначительными теплоизбытками в холодный период года, допустимые параметры следующие: температура 17—22° С, относительная влажность — не более 75 %, скороеть движения воздуха — не более 0,3 м/с.

Полезная информация:

Введение

1.2 Оптимальные условия микроклимата

1.3 Допустимые условия микроклимата

1.4 Определение индекса тепловой нагрузки среды (ТНС-индекса)

1.5 Регламентирование времени работы при температуре воздуха на рабочем месте выше или ниже допустимых величин

2. Технологические процессы и оборудование, обуславливающие неблагоприятные микроклиматические параметры на рабочих местах

3. Профилактика перегревания и переохлаждения

4 Контроль параметров микроклимата, требования к его организации и методам измерения

4.1 Контроль параметров микроклимата

4.2 Требования к организации контроля и методам измерения

5. Мероприятия по нормализации состояния воздушной среды производственных помещений

6. Проектирование систем защиты организма работающих от действия неблагоприятных производственных факторов

6.1 Архитектурно-планировочные мероприятия

6.2 Инженерно-технологические мероприятия

6.2.1 Вентиляционные системы

6.2.2 Кондиционирование воздуха

6.2.3 Отопление производственных помещений

Заключение

Список литературы

Приложение


Введение

Состояние здоровья человека, его работоспособность в значительной степени зависят от микроклимата на рабочем месте. Не имея возможности эффективно влиять на протекающие в атмосфере климатообразующие процессы, люди располагают качественными системами управления факторами воздушной среды внутри производственных помещений.

Микроклимат производственных помещений - это климат внутренней среды данных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а также температурой окружающих поверхностей (ГОСТ 12.1.005 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений").

Факторы, влияющие на микроклимат, можно разделить на две группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и др.). Для поддержания параметров воздушной среды рабочих зон в пределах гигиенических норм решающее значение принадлежит факторам второй группы.

Многочисленными исследованиями гигиенистов и физиологов труда установлено, что на организм человека оказывают значительное воздействие санитарно-гигиенические факторы производственной среды: метеорологические условия, шум, вибрация, освещенность Некоторые из них оказывают неблагоприятное влияние на работника, что снижает работоспособность, ухудшает состояние здоровья и иногда приводит к профессиональным заболеваниям. Поэтому необходимо знать не только причину возникновения этих факторов, но и иметь представление о способах уменьшения их отрицательного влияния на организм работающих. Особое внимание в данной работе уделяется изучению параметров микроклимата на рабочем месте, их влиянию на организм работающих, а также мероприятий по снижению их негативного воздействия.

Актуальность темы в том, что исключительно важную роль на состояние и самочувствие человека, на его работоспособность оказывает микроклимат, а требования к отоплению, вентиляции и кондинционированию непосредственно влияет на здоровье и производительность человека.

Целью данной работы было изучение нормативной и технической литературы, регламентирующей правила и нормы метеорологических условий рабочей зоны, исследование непосредственного влияния на организм работающих параметров микроклимата производственных помещений, а также проектирование систем защиты организма работающих от их негативного воздействия на примере использования систем вентиляции, кондиционирования и отопления; архитектурно-планировочных мероприятий.

1. Метеорологические условия и их нормирование в производственных помещениях

1.1 Микроклимат в производственных помещениях и влияние его показателей на организм работающих

Метеорологические условия для рабочей зоны производственных помещений регламентируются ГОСТ 12.1.005-88 "Общие санитарно гигиенические требования к воздуху рабочей зоны" и СанПиН 2.2.4.548-96 "Гигиенические требования к микроклимату производственных помещений"

ГОСТ 12.1.005 установлены оптимальные и допустимые микроклиматические условия. При длительном и систематическом пребывании человека в оптимальных микроклиматических условиях сохраняется нормальное функциональное и тепловое состояние организма без напряжения механизмов терморегуляции. При этом ощущается тепловой комфорт (состояние удовлетворения внешней средой), обеспечивается высокий уровень работоспособности. Такие условия предпочтительны на рабочих местах.

Для создания благоприятных условий работы, соответствующих физиологическим потребностям человеческого организма, санитарные нормы устанавливают оптимальные и допустимые метеорологические условия в рабочей зоне помещения.

Нормирование микроклимата в рабочих помещениях осуществляется в соответствии с санитарными правилами и нормами, изложенными в СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений".

Производственное помещение - замкнутые пространства в специально предназначенных зданиях и сооружениях, в которых постоянно или периодически осуществляется трудовая деятельности людей.

Рабочее место, на котором нормируется микроклимат - участок помещения (или всё помещение), на котором в течение рабочей смены или части её осуществляется трудовая деятельность.

Рабочая зона ограничивается высотой 2 метра над уровнем пола или площадки, где находятся рабочие места.

Холодный период года - период года, характеризуемый среднесуточной температурой наружного воздуха + 10°С и ниже.

Тёплый период года - период года, характеризуемый среднесуточной температурой наружного воздуха выше + 10°С.

Среднесуточная температура наружного воздуха - средняя величина температуры наружного воздуха, измеренная в определенные часы суток через Знаковые интервалы времени.

Показателями, характеризующими микроклимат в производственных помещениях, являются:

Температура воздуха;

Температура поверхностей;

Относительная влажность воздуха;

Скорость движения воздуха;

Интенсивность теплового облучения.

Кроме этих параметров, являющихся основными, не следует забывать об атмосферном давлении Р, которое влияет на парциальное давление основных компонентов воздуха (кислорода и азота), а, следовательно, и на процесс дыхания.

Жизнедеятельность человека может проходить в довольно широком диапазоне давлений 734 - 1267 гПа (550 - 950 мм рт. ст.). Однако здесь необходимо учитывать, что для здоровья человека опасно быстрое изменение давления, а не сама величина этого давления. Например, быстрое снижение давления всего на несколько гектопаскалей по отношению к нормальной величине 1013 гПа (760 мм рт. ст.) вызывает болезненное ощущение.

К показателям, характеризующим тепловое состояние человека, относятся температура тела, температура поверхности кожи и ее топография, теплоощущения, количество выделяемого пота, состояние сердечно-сосудистой системы и уровень работоспособности.

Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.

Необходимость учета основных параметров микроклимата может быть объяснена на основании рассмотрения теплового баланса между организмом человека и окружающей средой производственных помещений.

Величина тепловыделения Q организмом человека зависит от степени физического напряжения в определенных метеорологических условиях и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа).

Отдача теплоты организмом человека в окружающую среду происходит в результате теплопроводности через одежду Q т, конвекции у тела Q к, излучения на окружающие поверхности Q и, испарения влаги с поверхности кожи Q исп. Часть теплоты расходуется на нагрев вдыхаемого воздуха Q в.

Нормальное тепловое самочувствие (комфортные условия), соответствующее данному виду работы, обеспечивается при соблюдении теплового баланса:

Q=Q т +Q к +Q и +Q исп +Q в,

поэтому температура внутренних органов человека остается постоянной (36,0°-37,0° С). Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией.

Чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и как следствие к потере трудоспособности, быстрому утомлению, потере сознания и тепловой смерти.

Одним из важных интегральных показателей теплового состояния организма является средняя температура тела (внутренних органов) около 36,5 °С. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы. При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха она может повышаться от нескольких десятых градуса до 1...2°С. Наивысшая температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная - 25 °С.

Воздушная среда в помещениях

Среда защиты от опасных и вредных факторов

Если невозможно обеспечить безопасность человека при возникновении опасных и вредных факторов за счет мероприятий, заложенных в оборудование, технологию и т.п., то применяются средства защиты человека.

Средства защиты ─ это средства, используемые для предотвращения или уменьшения воздействия на человека опасных или вредных факторов.

По характеру применения средства защиты подразделяют на средства коллективной защиты и средства индивидуальной защиты.

К средствам коллективной защиты относят средства, применяемые для защиты двух и более человек, включая

сигнализацию, средства нормализации воздушной среды, освещения, защиты от поражения электрическим током и др.

К средствам индивидуальной защиты относятся средства, применяемые индивидуально, включая костюмы, средства защиты органов дыхания, слуха и т.д.

При всем многообразии средства защиты можно рассматривать как субъективные и объективные.

Применение субъективных вызывает защитные действия человека за счет его сознательных действий. Основными видами субъективных средств коллективной защиты являются устройства автоматического контроля, сигнализации, плакаты, знаки безопасности и др.

Объективные средства защиты работают независимо от человека ─ звукоизоляция, зануление, предохранительные устройства и др.

Состояние воздушной среды в помещениях определяется метеорологическими условиями (микроклимат) и составом воздуха, который может быть загрязнен газами, парами, пылью.

Характеризуются температурой, влажностью и скоростью движения воздуха в помещениях. Эти параметры воздушной среды оказывают влияние на теплообменные процессы между организмом и воздушной средой и жизнедеятельность человека.

В организме человека в состоянии покоя или работы происходит образование тепла. Причем, чем больше физических (мышечных) усилий совершает человек, тем больше образуется тепла. Образующееся тепло человек отдает в окружающее пространство конвекцией, теплоизлучением, с испарением пота, дыханием. Количество отдаваемого тепла и способов теплоотдачи зависят от метеорологических условий, т.е. температуры, влажности и скорости движения воздуха. В комфортных условиях примерно 30 % тепла человек отдает конвекцией, 45% - теплоизлучением, 25% - испарение пота и дыханием. При температуре воздуха более 37°С практически 100% образующегося тепла отдается с испарением пота, а при низкой температуре тепло отдается в основном конвекцией и теплоизлучением.

Температура тела человека не будет изменяться в том случае, если теплообразование организма равно теплоотдаче. Это состояние поддерживается за счет терморегуляции организма.



Терморегуляция организма ─ это совокупность теплообменных процессов между организмом и окружающей средой, в результате которых температура тела поддерживается на одинаковом уровне. Терморегуляция в основном осуществляется за счет изменения

интенсивностей потовыделения и кровообращения. Их увеличение способствует увеличению теплоотдачи и поддержанию нормальной температуре тела.

При благоприятных метеорологических условий за счет терморегуляции температура тела человека практически не меняется. Но возможности механизма терморегуляции ограничены. При неблагоприятных метеорологических условиях может происходить перегрев или переохлаждение организма, ведущее к заболеваниям.

Для обеспечения благоприятных метеорологических условий установлены нормы метеорологических условий в рабочих помещениях (они применимы и для бытовых помещений).

Оптимальные и допустимые температура, относительная влажность и скорость движения воздуха нормированы в зависимости от времени года, характеристики производственных помещений и категории выполняемой работы. В нормах приняты два времени года ─ теплый, со среднесуточной температурой наружного воздуха +10°С и выше, и холодной ─ ниже +10°С; три категории работ (легкие, средней тяжести, тяжелые соответственно с энергозатратами 172, 172-293 и более 293 Дж/с); и две характеристики помещений ─ с незначительными избытками явной теплоты (23,2 Дж/(м³с) и менее) и со значительными избытками ─ больше приведенных значений.

При контроле метеорологических условий в помещениях температуру воздуха замеряют термометрами, относительную влажность воздуха ─ психрометрами, скорость движения воздуха ─ анемометрами.

Поддержание требуемых метеорологических условий в помещениях обеспечивается за счет вентиляции, отопления, кондиционирования воздуха и поддержания помещений в исправном состоянии.