Как устроен и работает жидкостно-реактивный двигатель. Основные агрегаты жрд

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД), реактивный двигатель, не использующий для работы окружающую среду и работающий на жидком ракетном топливе. Может функционировать в атмосфере и в космическом (межпланетном) пространстве.

ЖРД - основной тип двигателей на космических кораблях, широко применяется также в высотных исследованиях и боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и др.

По назначению различают ЖРД основные (маршевые), разгонных блоков, верхних ступеней, корректирующие, тормозные, рулевые, микроракетные (могут работать в импульсном режиме). Топливо ЖРД может быть однокомпонентным и двухкомпонентным (горючее и окислитель); большинство современных ЖРД работают на двухкомпонентном топливе. ЖРД состоит из камеры сгорания (КС), сопла, турбонасосного агрегата подачи топлива, газогенератора, системы автоматики, органов регулирования, системы зажигания, телеметрических датчиков, вспомогательных агрегатов (теплообменников, рулевых приводов и др.), рамы и др. Ведутся работы по созданию трёхкомпонентных ЖРД.

Горючее и окислитель впрыскиваются под давлением в КС через форсунки, перемешиваются, испаряются и воспламеняются. Воспламенение (зажигание) топлива может осуществляться химическими, пиротехническими и электрическими средствами. Топливо после воспламенения горит при высоких давлениях (в некоторых случаях до 15-25 МПа и более). При горении топлива образуются газообразные продукты сгорания (рабочее тело), нагретые до температуры 3700-3900 К, которые истекают из камеры сгорания в окружающее пространство через сопло. Для целостности конструкции КС при такой температуре необходимо непрерывное её охлаждение. Оно может осуществляться, например, с помощью горючего, протекающего перед поступлением в смесительную головку по каналам внешней системы охлаждения камеры сгорания. Такой способ охлаждения называется регенеративным. По мере движения продуктов сгорания по длине сопла их температура и давление уменьшаются, а скорость возрастает, переходя порог скорости звука в минимальном (критическом) сечении сопла. На выходе из сопла скорость истечения достигает 2700-4500 м/с. Тяга, создаваемая каждым килограммом газов, вытекающих из двигателя в 1 с, называется удельным импульсом тяги. Чем выше скорость истечения, тем больше удельный импульс и, следовательно, тем совершеннее топливо и двигатель. Различают ЖРД с турбонасосной подачей топлива без дожигания продуктов сгорания (открытая схема), в котором продукты газогенерации после срабатывания в турбине выбрасываются в окружающую среду через вспомогательные сопла (давление в камерах сгорания 4,9-7,8 МПа), и ЖРД с дожиганием (закрытая, или замкнутая, схема), в котором продукты газогенерации после срабатывания в турбине направляются в камеру ЖРД для дожигания. Такие ЖРД не имеют потерь удельного импульса, обусловленных необходимостью привода в действие турбонасосного агрегата, и уровень давления в КС достигает 14,7-26,5 МПа.

Историческая справка. Принципиальная схема ЖРД разработана К. Э. Циолковским в 1903 году, доказавшим возможность использования ЖРД для полётов в космос. Учёный также указал наиболее выгодные ракетные топлива и исследовал вопросы устройства основных агрегатов. Практические работы по созданию были начаты в 1921 в США Р. Годдардом, осуществившим в 1926 первый в мире запуск ракеты с ЖРД. В конце 1920-х - начале 1930-х годов к разработке ЖРД приступили в СССР, Германии и других странах. В 1931 были испытаны первые российские ЖРД - ОРМ (опытный ракетный мотор) и ОРМ-1, созданные В. П. Глушко в ленинградской Газодинамической лаборатории (ГДЛ). В 1933 испытана двигательная установка ОР-2 конструкции Ф.А. Цандера, а двигатель-10, созданный московской Группой изучения реактивного движения (ГИРД), обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны в СССР и США появились опытные образцы ЖРД с тягой до нескольких сотен кг, предназначенные для экспериментальных ЛА. В Германии во время 2-й мировой войны в процессе проводившихся интенсивных работ в области ракетной техники были созданы разнообразные типы ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД зенитной управляемой ракеты «Вассерфаль» и баллистические ракеты Фау-2. Первыми серийными российскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ-ОКБ.

Дальнейшее развитие ЖРД определили начатые в середине 1950-х годов в СССР и США программы по созданию межконтинентальных баллистических ракет и ракет-носителей (PH). Для их реализации были созданы мощные, экономичные и компактные ЖРД, работающие на кислородно-керосиновом топливе. В 1960-х годах созданы ЖРД, работающие на высококипящих топливах, и кислородно-водородные ЖРД. Впервые идея замкнутой схемы была разработана в конце 1950-х годов в СССР в НИИ-1 (ныне Исследовательский центр имени М. В. Келдыша) и реализована в 1960. Эти ЖРД с середины 1960-х годов широко применяются на PH (например, «Протон», Н-1). Наряду с мощными маршевыми ЖРД созданы многочленные ЖРД средней и малой тяги.

В 1970-90-х годах создан один из самых мощных в мире четырёхкамерных ЖРД - РД-170 (давление в камере сгорания 24,5 МПа, тяга на земле/в вакууме 7200/7900 кН) для первых ступеней ракетно-космического комплекса «Энергия - Буран» и его модификации РД-171 для PH «Зенит», а также высокоресурсный маршевый двигатель РД-0120 тягой 1961 кН для 2-й ступени PH «Энергия» на энергоёмких компонентах топлива (кислород - керосин); на стратегической ракете Р-36М («Сатана») установлен двигатель РД-264 тягой 4520 кН с давлением в камере сгорания 20,6 МПа. Для орбитального корабля «Буран» впервые в мировой практике для космического аппарата использован криогенный окислитель - жидкий кислород и горючее - синтетической углеводород синтин, что существенно повысило энергетические возможности орбитального корабля и сделало его эксплуатацию более безопасной и экологически чистой. В 2001 успешно проведено первое огневое испытание кислородно-керосинового двигателя РД-191 (замкнутая схема), созданного для 1-й ступени семейства российских PH «Ангара»; в 2005 разработан четырёхкамерный ЖРД РД-0124 (замкнутая схема) для установки на 3-ю ступень PH «Союз-2-1 Б». Крупнейшие из зарубежных организаций, занятых разработкой ЖРД, находятся в США. Ведущая фирма - «Rocketdyne», разработавшая: в 2000 кислородно-водородный двигатель RS-68 (открытая схема, тяга 3230 кН) для установки на ракете Delta 4, в 2002 - кислородно-водородный ЖРД RS-83 (замкнутая схема) тягой 2900 кН в рамках программы НАСА «Космическая пусковая инициатива» SLI (Space Launch Initiative).

Большинство российских космических ЖРД, обеспечивших полёты первых российских искусственных спутников Земли, искусственных спутников Солнца, Луны, Марса, автоматических станций на Луну, Венеру и Марс, космических кораблей, всех геофизических и других ракет в 1949 - 70-х годах, создано под руководством В. П. Глушко, А. М. Исаева, С. А. Косберга, М. В. Мельникова и других конструкторов. ЖРД получили широкое развитие в США, Великобритании, Франции и других странах.

Дальнейшее развитие ЖРД связано с поиском и освоением новых топлив и разработкой новых технических принципов, обеспечивающих дальнейшее увеличение кпд и уменьшение габаритов и массы ЖРД. Ведутся работы над созданием двигательных установок для многоразовых средств выведения на базе ЖРД и воздушно-реактивных двигателей.

Лит.: Основы теории и расчета жидкостных ракетных двигателей / Под редакцией В. М. Кудрявцева. 4-е изд. М., 1993; Добровольский М. В. Жидкостные ракетные двигатели: основы проектирования. 2-е изд. М., 2005.

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД) - ракетный двигатель , работающий на жидком ракетном топливе . Превращение топлива в реактивную газовую струю, создающую тягу, происходит в камере . В современных ЖРД используются как двухкомпонентные ракетные топлива , состоящие из окислителя и горючего, которые хранятся в отдельных баках, так и однокомпонентные ракетные топлива , являющиеся жидкостями, способными к каталитическому разложению. По роду используемого окислителя ЖРД бывают азотнокислотные, азоттетроксидные (окислитель - четырёхокись азота), кислородные, перекисьводородные, фторные и др. В зависимости от значения тяги различают ЖРД малой, средней и большой тяги. Условными границами между ними являются 10 кН и 250 кН (на ЛА устанавливались ЖРД с тягой от десятых долей Н до 8 МН). ЖРД характеризуются также удельным импульсом тяги , режимом работы, габаритами, удельной массой , давлением в камере сгорания, общим устройством и конструкцией основных агрегатов. ЖРД является основным типом космических двигателей и широко применяется также в высотных исследовательских ракетах, боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и т. д.

Основные проблемы при создании ЖРД : рациональный выбор топлива, удовлетворяющего энергетическим требованиям и условиям эксплуатации; организация рабочего процесса для достижения расчётного удельного импульса; обеспечение устойчивой работы на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя; охлаждение ракетного двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях до многих десятков МПа (это воздействие усугубляется в некоторых случаях присутствием конденсированной фазы в сопле); подача топлива (криогенного, агрессивного и др.) при давлениях, доходящих для мощных двигателей до многих десятков МПа, и расходах до нескольких т/с; обеспечение минимальной массы агрегатов и двигателя в целом, работающих в весьма напряжённых режимах; достижение высокой надёжности.

ЖРД был предложен К. Э. Циолковским в 1903 году как двигатель для полёта в космос. Учёный разработал принципиальную схему ЖРД , указал наиболее выгодные ракетные топлива, исследовал вопросы устройства основных агрегатов. Практические работы по созданию ЖРД были начаты в 1921 году в США Р. Годдардом (R. Goddard). В 1922 году он впервые зарегистрировал тягу при испытании экспериментального ЖРД , а в 1926 году осуществил пуск небольшой жидкостной ракеты. В конце 20-х – начале 30-х гг. к разработке ЖРД приступили в Германии, СССР и других странах. В 1931 году были испытаны первые советские ЖРД ОРМ и ОРМ-1, созданные В. П. Глушко в Газодинамической лаборатории. В 1933 году испытана двигательная установка ОР-2 конструкции Ф. А. Цандера, а двигатель 10, созданный Группой изучения реактивного движения, обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны 1939-45 гг. в СССР и США появились опытные образцы ЖРД с тягой до нескольких кН, предназначенные для экспериментальных летательных аппаратов. Интенсивные работы в области ракетной техники, проводившиеся в Германии во время войны, вызвали появление разнообразных типов ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД конструкции X. Вальтера (H. Walter) (в т.ч. ХВК 109-509А (HWK 109-509A)) и X. Зборовского (H. Zborowski), ЖРД зенитной управляемой ракеты «Вассерфаль» (Wasserfall) и баллистической ракеты Фау-2 (V-2). До 2-й половины 40-х гг. самыми крупными советскими ЖРД были Д-1-А-1100 и РД-1, разработанные Реактивным научно-исследовательским институтом. Первыми серийными советскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ–ОКБ. Там же в 1947-53 гг. были разработаны первые в СССР мощные ЖРД : РД-100, РД-101, РД-103. В этот же период в США изготовлялся ЖРД с тягой ~ 350 кН для баллистической ракеты «Редстоун» (Redstone).

Дальнейшее развитие ЖРД и современное их состояние определила начатая в середине 50-х гг. в СССР и США разработка МБР и РН. Для их реализации потребовалось создать мощные, экономичные и компактные ЖРД . Первыми среди них были РД-107 и РД-108, с появлением которых тяга ЖРД увеличилась вдвое, тяга ДУ – в 10 раз. Удельный импульс ЖРД возрос почти на 30%, удельная масса снизилась более чем в 1,5 раза. Эти результаты стали возможны благодаря разработке принципиально новой конструкции ЖРД , позволившей перейти с топлива кислород - этиловый спирт на кислородно-керосиновое при одновременном увеличении давления в камере сгорания в 2–2,5 раза.

С начала 60-х гг. на ракеты-носители (РН) начали также применяться ЖРД , работающие на высококипящих топливах. Первым из них был РД-214. Большое значение для развития космонавтики имело создание в середине 60-х гг. кислородно-водородных ЖРД (предназначены для верхних ступеней РН), которые по удельному импульсу превосходят кислородно-керосиновые на 30%. Т.к. кислородно-водородное топливо по сравнению с кислородно-керосиновым требует при той же массе втрое большего объёма для своего размещения, а баки водорода приходится снабжать теплоизоляцией, то число Циолковского получается для кислородно-водородного топлива на 40% большим. Этот недостаток с избытком компенсируется высокой экономичностью кислородно-водородных ЖРД . При равной стартовой массе РН они способны вывести на околоземную орбиту втрое больший полезный груз, чем кислородно-керосиновые ЖРД .

Осваивая всё более эффективные топлива, конструкторы ЖРД стремились одновременно к тому, чтобы преобразовать химическую энергию топлив в кинетическую энергию реактивной струи с возможно большим КПД . С этой целью была разработана схема ЖРД с дожиганием генераторного газа в камере. Для реализации этой схемы потребовалось создать камеры, работающие в условиях высоких механических и тепловых нагрузок, а также компактные агрегаты питания большой мощности. ЖРД с дожиганием с середины 60-х гг. широко применяются на РН, в частности используются на всех ступенях РН «Протон».

Наряду с мощными космическими ЖРД созданы многочисленные ЖРД средней и малой тяги. Безотказная работа двигателей космических аппаратов (КА) обеспечивается в большой степени использованием высококипящих однокомпонентных и самовоспламеняющихся ракетных топлив , хранение которых на борту КА не вызывает трудностей. ДУ с ЖРД на однокомпонентном топливе проще по устройству, но имеют существенно меньший удельный импульс. К середине 60-хчислогг. во вспомогательных ЖРД получила наибольшее применение перекись водорода, которая затем начала вытесняться гидразином и двухкомпонентными топливами. Использование гидразина позволило повысить удельный импульс ЖРД на однокомпонентном топливе примерно на 40%.

Большинство советских космических ЖРД создано в ГДЛ-ОКБ В. П. Глушко, ОКБ А. М. Исаева и ОКБ С. А. Косберга. Двигатели РД-107, РД-108, РД-214, РД-216, РД-253 и другие конструкции ГДЛ-ОКБ обеспечили старт всех советских РН; на вторых ступенях ряда РН также установлены ЖРД конструкции ГДЛ-ОКБ: РД-119, РД-219 и др. Двигатели ОКБ Косберга установлены на верхних ступенях РН «Восток», «Восход» («Союз») и «Протон». Двигатели ОКБ Исаева используются в основном на искусственных спутниках Земли (ИСЗ), межпланетных КА и космических кораблях (КК) (КРД-61, КДУ-414, ТДУ-1, КТДУ-5А и др.).

Крупнейшие из зарубежных организаций, занятых разработкой ЖРД , находятся в США. Ведущей является фирма «Рокетдайн» (Rocketdyne), которой созданы ЖРД Джей-2 (J-2), ЛР-79-НА (LR-79-NA), ЛР-89-НА (LR-89-NA), ЛР-105-НА (LR-105-NA), РС-2701 (RS-2701), Эйч-1 (H-1), Ф-1 (F-1), ССМЭ (SSME), многочисленные ЖРД средней и малой тяги на высококипящем двухкомпонентном топливе. Большинство упомянутых мощных ЖРД создано под руководством С. Гофмана (S. Hoffman). Фирмой «Аэроджет Дженерал Корпорейшн» (Aerojet General Corporation) создан ряд ЖРД на высококипящем двухкомпонентном топливе, в т.ч. ЖРД ЛР-87-АДжей-5 (LR-87-AJ-5) и ЛР-91-АДжей-5 (LR-91-AJ-5), серия ЖРД средней тяги АДжей-10 (AJ-10), включающая АДжей-10-137 (AJ-10-137) и АДжей-10-138 (AJ-10-138). Фирма «Пратт энд Уитни» (Pratt & Whitney) создала первый в мире кислородно-водородный ЖРД РЛ-10 (RL-10), фирма «Белл Aэроспейс Tекстрон» (Bell Aerospace Textron) - многочисленные вспомогательные ЖРД , а также ЖРД средней тяги ЛР-81-БА-9 (LR-81-BA-9), фирма «ТРВ» - ЖРД средней тяги ЛМДЭ (LMDE), фирма «Марквардт» (Marquardt)- ряд ЖРД на высококипящем двухкомпонентном топливе для КК и межпланетных КА. В США создано несколько десятков типов гидразиновых ЖРД (в полёте испытаны ЖРД с тягой от 0,4 Н до 2,7 кН). В числе разработчиков ЖРД для межпланетных КА - фирма «Риэкшен моторс» (Reaction Motors), создавшая также мощный ЖРД ЛР-99-РМ-1 (LR-99-RM-1). Наиболее известные из западноевропейских ЖРД - АшМ-7 (HM-7), «Валуа» (Valois), «Вексен» (Vexen), «Викинг» (Viking, Франция), «Гамма-2» (Gamma), «Гамма-8», РЗет-2 (RZ-2, Великобритания). В Западной Европе также разрабатываются ЖРД малой тяги на двух- и однокомпонентном топливах для ИСЗ. Япония производит по лицензии американские ЖРД ЛР-79-НА для собственного варианта РН «Дельта» (Delta). Для одной из ступеней этой РН фирмой «Мицубиси» (Mitsubishi) разработан ЖРД на высококипящем топливе тягой 53 кН с вытеснительной подачей. На стендах испытаны кислородно-водородные ЖРД тягой до 0,1 МН с насосной подачей. В китайских РН используются ЖРД тягой 0,7 МН с насосной подачей высококипящего топлива.

Космические ЖРД разнообразны по устройству и характеристикам. Наибольшее различие существует между мощными ЖРД , обеспечивающими разгон РН, и ЖРД реактивных систем управления КА. Первые работают на двухкомпонентном топливе. Тяга этих ЖРД достигает 8 МН (при суммарной тяге ДУ до 40 МН), размеры - несколько метров, а масса - несколько тонн. Они рассчитаны обычно на однократное включение (кроме некоторых ЖРД верхних ступеней РН) и работу в течение 2-10 мин при изменении параметров в узких пределах. К этим ЖРД предъявляется требование обеспечивать высокий удельный импульс при малых габаритах и массе. Поэтому в них применяется насосная подача топлива в камеру (исключение составляют ЖРД «Вексен» и «Валуа»). С этой целью в ЖРД предусматривается турбонасосный агрегат (ТНА) и газогенератор (ГГ). ТНА содержит высоконапорные топливные насосы (обычно осецентробежные) и приводящую их в действие турбину, которая вращается газом, получаемым в ГГ. В ЖРД без дожигания отработанный в турбине генераторный газ сбрасывается в выхлопной патрубок, рулевое сопло или сопло камеры. В ЖРД с дожиганием этот газ поступает в камеру для дожигания с остальной частью топлива.

В ЖРД без дожигания через ГГ может расходоваться 2-3% всего топлива, и целесообразный предел давления в камере сгорания ограничен значением ~ 10 МПа, что связано с потерями удельного импульса на привод ТНА: для ЖРД в целом этот параметр ниже, чем для камеры, т.к. дополнительная тяга, создаваемая истечением отработанного генераторного газа, невелика. Причиной тому являются малые значения давления и температуры этого газа. Для ЖРД РД-216 они составляют, например, 0,12 МПа и 870 К соответственно; при этом потери удельного импульса достигают 1,5% (свыше 40 м/с). С повышением давления в камере сгорания наблюдается увеличение её удельного импульса, но для этого приходится увеличивать расход генераторного газа (для обеспечения потребной мощности топливных насосов). С некоторого момента всё возрастающие потери удельного импульса на привод ТНА уравновешивают, а затем превышают прирост удельного импульса камеры. В ЖРД с дожиганием через ГГ расходуется значит, часть всего топлива (20-80%), однако привод ТНА осуществляется без ухудшения экономичности ЖРД (значения удельного импульса камеры и ЖРД совпадают). В камерах сгорания этих ЖРД удаётся реализовать давление 15-25 МПа (давление в ГГ приблизительно вдвое больше). Для мощных ЖРД с насосной подачей топлива удельный импульс достигает 3430 м/с при использовании кислородно-керосинового топлива и 4500 м/с при использовании кислородно-водородного; удельная масса ЖРД может составлять всего 0,75-0,85 г/Н.

Кроме камеры, ТНА и ГГ, мощные ЖРД содержат топливные трубопроводы с сильфонными шлангами и компенсаторами угловых и линейных перемещений, облегчающими сборку и установку ЖРД , а также обеспечивающими разгрузку от термических напряжений и позволяющими производить отклонение камеры с целью управления движением РН; трубопроводы генераторного газа и дренажа топлива; устройства и системы запуска ракетного двигателя ; агрегаты автоматики с электроприводами, пневмо-, пиро- и гидросистемами и устройствами для управления работой ЖРД (в т.ч. для его дросселирования ); агрегаты системы аварийной защиты; датчики системы телеметрических измерений; электрические кабельные стволы для подачи сигналов на агрегаты автоматики и приёма сигналов от телеметрических датчиков; теплоизоляционные чехлы и экраны, обеспечивающие надлежащую температуру в двигательном отсеке и исключающие перегрев либо переохлаждение отдельных элементов; элементы системы наддува баков (теплообменники, смесители и т. п.); шарнирный подвес или раму для крепления ЖРД к РН (рама, воспринимающая тягу, является одновременно элементом, на котором собирается двигатель); нередко - рулевые камеры и сопла с системами, обеспечивающими их работу; элементы общей сборки (кронштейны, крепёжные детали, уплотнения). По устройству различают блочные жидкостные ракетные двигатели , одно- и многокамерные (с питанием нескольких камер от одного ТНА).

ЖРД реактивных систем управления относятся к двигателям малой тяги, их масса обычно не достигает 10 кг, а высота 0,5 м; масса многих ЖРД не превышает 0,5 кг, и они умещаются на ладони. Характерной особенностью указанных ЖРД является работа в импульсном режиме (за несколько лет функционирования КА суммарное число включений ЖРД может достичь нескольких сотен тысяч, а наработка нескольких часов). Эти ЖРД представляют собой одностенные камеры, снабжённые пуско-отсечными топливными клапанами, и рассчитаны на вытеснительную подачу высококипящего топлива (двухкомпонентного самовоспламеняющегося или однокомпонентного). Давление в камерах сгорания указанных ЖРД , определяемое главным образом давлением наддува баков ДУ и гидравлическим сопротивлением питающих магистралей, находится в диапазоне 0,7-2,3 МПа. В том случае, когда газ для наддува топливных баков размещён в самих баках, его давление по мере расходования топлива снижается, что приводит к ухудшению характеристик ЖРД . Сравнительно высокий удельный импульс ЖРД (до 3050 м/с для двухкомпонентного топлива и до 2350 м/с для гидразина) достигается за счёт относительно больших размеров реактивного сопла, что обеспечивает расширение продуктов сгорания до очень малого давления. Несмотря на небольшую абсолютную массу ЖРД реактивных систем управления, их удельная масса велика (при уменьшении тяги от 500 до 1 Н возрастает приблизительно с 5 до 150 г/Н).

ЖРД космических аппаратов занимают по своим характеристикам промежуточное положение между мощными ЖРД ракет-носителей и ЖРД реактивных систем управления. Их тяга охватывает диапазон от сотен Н до десятков кН и может быть как нерегулируемой, так и регулируемой; они могут непрерывно работать десятые доли секунд и несколько тысяч секунд при числе включений от 1 до нескольких десятков. В указанных ЖРД применяются те же типы топлив, что и в ЖРД реактивных систем управления (однокомпонентное топливо используется только в ЖРД малой тяги).

В планах дальнейшего освоения космоса ЖРД отводится большая роль. Мощные ЖРД , рассчитанные на экономичное использование эффективных топлив, по-прежнему находятся в центре внимания. К 1981 году создан кислородно-водородный ЖРД с тягой свыше 2 МН, предназначенный для разгона ЛА от старта до вывода на околоземную орбиту. Благодаря достижениям в области криогенной техники и теплоизоляционных материалов становится целесообразным создание ЖРД на низкокипящих топливах, развивающих высокий удельный импульс, для использования в КА, функционирующих в космосе. Прогресс в разработке ЖРД с тягой до нескольких десятков кН, работающих на топливах, содержащих фтор и его производные (см., например, РД-301), делает реальным применение фторных ЖРД в разгонных блоках РН и в автоматических КА, которые будут совершать полёты к планетам. При стендовых испытаниях в 1977 году экспериментального кислородно-водородного ЖРД (тяга 0,1 МН), разрабатываемого для этих целей, достигнут удельный импульс 4690 м/с. Проводятся экспериментальные исследования различных проблем создания ЖРД на металлсодержащем топливе .

Наряду с освоением для ЖРД новых топлив ведутся поиски технических принципов, обеспечивающих дальнейшее увеличение КПД и уменьшение габаритов и массы ЖРД . Улучшение параметров, достигаемое путём увеличения давления в камере, с ростом давления становится всё менее ощутимым, а трудности создания ЖРД всё более возрастают. Увеличение указанного параметра свыше 25-30 МПа является малоэффективным и трудно реализуемым. Проявляется интерес к ЖРД , снабжённым соплами с центральным телом . С целью снижения стоимости запуска полезных грузов разработаны ЖРД (для КА многократного использования), рассчитанные на несколько десятков полётов и ресурс в несколько часов при малом объёме межполётных регламентных работ.

Под влиянием идей Ф.А. Цандера и К.Э. Циолковского, а также благоприятных технических перспектив в создании ЖРД, вычисленных при расчетах летных характеристик самолетов с ЖРД, советские специалисты пришли к выводу, что пределы применения поршневых двигателей по скорости и высоте могут быть преодолены применением ЖРД.

Жидкостный ракетный двигатель - ракетный двигатель, работающий на жидких компонентах топлива. ЖРД в общем случае состоит: из одной или нескольких камер, агрегатов системы подачи и автоматики, устройств для создания управляющих усилий и моментов, рамы, магистралей и вспомогательных устройств и агрегатов. Агрегаты автоматики ЖРД входят в совокупность устройств, обеспечивающих управление, регулирование и обслуживание ЖРД. ракетный самолет циолковский ЖРД

Двигательная установка с ЖРД состоит из следующих основных частей: одного или нескольких ЖРД, баков с рабочим телом, агрегатов наддува топливных баков или вытеснительной подачи топлива, рулевых приводов, магистралей соединяющих двигатели с баками, и вспомогательных устройств, автоматики, предназначенной для регулирования, как отдельных узлов ЖРД, так и двигательной установки в целом.

Для работы ЖРД необходимо на борту летательного аппарата иметь рабочие тела, способные вступать в химические экзотермические реакции, т.е. реакции с выделением тепла. Если в результате разложения вещества выделяется тепло, то говорят об унитарном топливе. Наиболее распространены двухкомпонентные топлива, горючее и окислитель которых смешиваются только в камере сгорания.

Топлива ЖРД должны удовлетворять ряду серьезных и иногда противоречивых требований. Одним из основных требований является большая удельная теплота сгорания, или теплотворная способность, т.е. тепловой эффект реакции для 1 кг горючего или топлива в целом. Если в компонентах топлива содержатся еще балластные атомы, не принимающие участия в реакциях, то удельная теплота сгорания может стать недостаточной для получения высоких скоростей истечения продуктов реакции.

Другое требование к топливам ЖРД состоит в том, чтобы в результате реакции образовывалась газовая смесь с минимальной относительной молекулярной массой. Как следует из закона сохранения энергии, при одной и той же подведенной энергии вещества с меньшей относительной молекулярной массой имеют большую скорость истечения.

Требования к топливам ЖРД заключаются в том, что топлива в жидком состоянии должны иметь большую плотность, коррозионная стойкость по отношению к конструкционным материалам, токсичность, чувствительность к удару

Имеется еще ряд других требований, но даже из сопоставления уже перечисленных видно, как важен правильный выбор компонентов топлива. В связи с различными требованиями, предъявляемыми к летательным аппаратам, следовательно, и к их ЖРД, используется довольно много различных химических веществ. Применение, в частности, легкокипящих, токсичных агрессивных компонентов вызывает целый ряд дополнительных трудностей при создании и эксплуатации изделий. Однако большинство трудностей удается все же преодолеть.

В качестве горючего в ЖРД применяются углеводороды, водород и т.д. В качестве окислителя используют кислород, азотную кислоту, перекись водорода и т.п.

В некоторых случаях для простоты запуска двигателя применяют самовоспламеняющиеся компоненты, которые активно взаимодействуют между собой. Удельный импульс двигателей, использующих самовоспламеняющиеся топлива не превышает 3500 м/с.

Рассмотрим подробнее некоторые элементы двигателя. В камере сгорания ЖРД происходят процессы испарения, смещения и сгорания компонентов топлива. Головка камеры сгорания снабжена большим числом форсунок, с помощью которых жидкость подвергается распылению на мелкие капли. Это существенно увеличивает интенсивность испарения и перемешивания между собой паров компонентов топлива, что позволяет уменьшить длину камеры, необходимую для полного сгорания. Поскольку используются высокоэффективные топлива, то температура газов внутри камеры может превышать 3000 градусов. Камеры двигателя делаются сравнительно легкими и компактными. На стенки камеры, обычно цилиндрической формы, действует мощный тепловой поток. Чтобы предохранить стенки камер от разрушения, их приходится усиленно охлаждать. С этой целью рубашки камеры делаются двойными. В полость между наружной и внутренней стенками- оболочками подается один из компонентов топлива. Протекая по зазору между оболочками вдоль всей камеры, жидкость нагревается и уносит тепло, подходящее с огневой стороны камеры. Нагретый компонент впрыскивается через форсунки в камеру сгорания. Конструктивно стенки камер сгорания различных двигателей выполнены или в виде двух цилиндров, связанных между собой внутренними вставками, по которым протекает охлаждающий компонент, и т.д. Однако такого наружного охлаждения иногда недостаточно, и у стенки внутри камеры сгорания приходится снижать температуру газа. Это достигается обычно за счет подачи части горючего непосредственно в пристеночный слой. Для камер ЖРД, работающих очень короткое время, иногда не применяют специального охлаждения, а тепло, идущее в стенки камеры, расходуется на нагрев достаточно массивной конструкции камеры.

У ЖРД может быть одна или несколько камер. В зависимости от назначения двигателя и величины его тяги диаметры и длины камер изменяются в широких пределах. Камера ЖРД состоит из смесительной головки с форсунками, камеры сгорания и сопла. Наиболее узкое сечение сопла, где газ разгоняется до скорости звука, называется критическим сечением. В районе критического сечения стенки сопла приходится охлаждать значительно интенсивнее, чем наиболее теплонапряженные части камеры двигателя. В сверхзвуковой части сопла теплоподвод в стенки уменьшается настолько, что концевые части сопла можно делать без жидкостного охлаждения.

Рис. 1. Схема жидкостного ракетного двигателя.

Расширение сопла существенно влияет на величину удельного импульса и зависит от соотношения давлений в двигателе и окружающей среды.

Развитие ЖРД ведет свое начало примерно от рубежа XIX и XX столетий. В этот период были заложены основы теории реактивного движения и механики тел переменной массы. В разработке этих вопросов значительна роль выдающихся русских ученых Н.Е. Жуковского (1847-1921), И.В. Мещерского (1859-1935) и др.

Однако крупнейшим вкладом в развитие проблем реактивного движения явились работы знаменитого русского ученого К.Э. Циолковского (1857- 1935), по праву считающегося основоположником современной космонавтики и ракетной техники. Начав интересоваться проблемами реактивного движения в 1883г., К.Э. Циолковский опубликовал в 1903г. получивший впоследствии всемирную известность труд «Исследование мировых пространств реактивными приборами». В этой работе Циолковский изложил основы ракетодинамики и описал ракету как средство для космических полетов. Предложенная им схема ракетного двигателя на жидком топливе стала базой для разработок, выполненных его последователями. Пророческими оказались его высказывания о выборе топлива и некоторых особенностях устройства такого двигателя. Циолковским были предложены: кислородно-углеводородное и кислородно-водородное топлива; регенеративное охлаждение камеры сгорания и сопла двигателя компонентами жидкого топлива; керамическая изоляция этих элементов конструкции; раздельное хранение и насосная подача компонентов топлива в смесительную головку камеры с последующим сжиганием; управление вектором тяги поворотом выходной части сопла и газовыми рулями. Им была показана первостепенная важность высокой скорости истечения рабочего тела из двигателя и охарактеризованы способы ее увеличения.

Первыми последователями Циолковского в нашей стране были талантливые ученые и изобретатели Ю.В. Кондратюк (1897-1942), Ф.А. Цандер (1887-1933) и В.П.Глушко (1908-1989).

Ю.В Кондратюк работал независимо от Циолковского. Его основное теоретическое исследование «Завоевание межпланетных пространств» (1929) отчасти повторило и дополнило работы Циолковского, некоторые вопросы нашли новое решение. В частности, Кондратюк предложил в качестве топлива для двигателей некоторые металлы и их водородные соединения.

Ф.А. Цандер еще в студенческие годы изучал труды Циолковского и интересовался вопросами космических полетов. В 1924г. он изложил свою основную идею - сочетание ракеты с самолетом для взлета с Земли и последующее сжигание металлических частей самолета в качестве горючего для реактивного двигателя. Цандером выполнены теоретические исследования различных вопросов воздушно-реактивных и ракетных двигателей, начал работы по их практической реализации.

В.П. Глушко еще в юности увлекался вопросами космонавтики. В письме Циолковскому от 26 сентября 1923г. он написал, что уже более 2 лет поглощен идеей межпланетных путешествий. С 1924г. Глушко начинает публиковать научно-популярные и научные работы по ракетно-космической технике. В 1930г. Глушко предложил в качестве компонентов ракетного топлива азотную кислоту, смесь азотной кислоты с четырехокисью азота, тетранитрометан, перекись водорода, смеси фтора с кислородом, трехкомпонентное топливо и др., была разработана керамическая теплоизоляция камеры сгорания двуокисью циркония. В 1931г. Глушко предложил, а в 1933г. внедрил химическое зажигание и самовоспламеняющееся топливо. Тогда же были разработаны профилированное сопло, карданная подвеска двигателя для управления полетом ракеты, конструкция турбонасосного агрегата с центробежными топливными насосами.

Глушко выполнены многочисленные теоретические и экспериментальные исследования по важнейшим вопросам создания и развития ЖРД, разработано большое количество конструкций двигателей от первых отечественных опытных ракетных моторов (ОРМ) до новейших образцов, летающих в космос. Являясь одним из пионеров ракетной техники, Глушко по праву считается основоположником отечественного ракетного двигателестроения.

Теми же путями, что и Циолковский, но позднее его, подошли к идее создания ракет с ЖРД в зарубежных странах.

Циолковский не проводил экспериментальных работ по созданию ЖРД. Эта задача решалась его учениками и последователями, как в СССР, так и за рубежом.

В США экспериментальные работы были начаты Р.Годдардом (1882-1945), предложившим много различных технических решений в области создания ЖРД и ракет с ними.

В США уже в 1921г. Годдардом были проведены стендовые испытания экспериментального ЖРД, работавшего на кислородно-эфирном топливе. 16 марта 1926г. им был осуществлен первый запуск экспериментальной жидкостной ракеты.

В Германии стендовые испытания ЖРД были начаты Обертом в 1929г., а летные испытания жидкостных ракет Винклером с 1931г. С 1937г. под руководством Вернера фон Брауна разрабатывалась наиболее мощная по тому времени ракета Фау-2, летные испытания которой были начаты в 1942г.

В СССР начало экспериментальных работ по реализации идей Циолковского относится к 15 маю 1929г., когда в составе Газодинамической лаборатории в Ленинграде было создано и приступило к практической деятельности первое опытно- конструкторское подразделение для разработки ракет и электрических и жидкостных ракетных двигателей к ним. Руководил подразделением Глушко. В этом подразделении в 30-х гг. было создано семейство опытных ЖРД с тягой от 60 до 300 кгс, работавших на различных жидких окислителях и горючих. Двигатели имели обозначение ОРМ (опытный ракетный мотор).

Первый советский экспериментальный ЖРД ОРМ-1 был разработан и построен в 1930-1931гг. Топливо двигателя - четырехокись азота и толуол или жидкий кислород и бензин. При испытании на кислородном топливе ОРМ-1 развивал тягу до 20 кгс.

Рис. 2. Первый отечественный жидкостно-ракетный двигатель ОРМ-1.

В период 1930-1933г. в ГДЛ была создана серия ЖРД от ОРМ-1 до ОРМ-52. Наиболее мощный ЖРД ОРМ-52 работал на азотной кислоте и керосине и развивал тягу до 250…300 кгс при давлении в камере сгорания 2…2,5 МПа.

В ГДЛ были впервые успешно решены многие практические вопросы создания ЖРД, определены дальнейшие пути развития.

Проблемы ракетной техники, привлекавшие широкое внимание, разрабатывались многими советскими энтузиастами на общественных началах. Их объединения получили название групп изучения реактивного движения (ГИРД). Такие общественные организации при Осовиахиме были созданы в 1931г. в Москве (МосГИРД) и Ленинграде (ЛенГИРД), позже - в других городах. Среди организаторов и активных работников МосГИРД были Ф.А. Цандер, С.П. Королев, В.П. Ветчинкин, М.К. Тихонравов, Ю.А. Победоносцев и др. МосГИРД развернула широкую лекционную и печатную пропаганду, организовала курсы по теории реактивного движения и начала работу по проектированию авиационного ЖРД ОР-2 Ф.А.Цандера для ракетоплана РП-1. В 1932г. в Москве на базе МосГИРД была создана научно-исследовательская и опытно-конструкторская организация по разработке ракет и двигателей, также именовавшаяся ГИРД, а ее начальником стал С.П. Королев.

Двигатели, разрабатывавшиеся в ГИРД, использовали в качестве окислителя жидкий кислород, а в качестве горючего - бензин и этиловый спирт. Первый ЖРД Цандера, ОР-2, был испытан в 1933г., он работал на кислороде и бензине.

В конце 1933г. в Москве на базе ГДЛ и ГИРД был создан первый в мире государственный Реактивный научно-исследовательский институт (РНИИ). Специалисты по ЖРД, выросшие в ГДЛ, разработали в РНИИ в 1934-1938гг. серию экспериментальных двигателей от ОРМ-53 до ОРМ-102 и газогенератор ГГ-1, работавший часами на азотной кислоте и керосине с водой при температуре 850 К и давлении 2,5 МПа. Двигатель ОРМ-65, прошедший официальные испытания в 1936г., был наиболее совершенным двигателем своего времени. Двигатель работал на азотной кислоте и керосине, тяга регулировалась в пределах 50…175 кгс, запуск многократный, в том числе автоматизированный. Огневые испытания ОРМ-65 проходили на летательных аппаратах конструкции С.П.Королева, крылатой ракете 212 и ракетном планере РП-318-1. 28 февраля 1940г. летчик В.П.Федоров совершил первый полет на ракетном планере с двигателем РДА-1 - 150, который был модификацией ОРМ-65.

Начались реальные экспериментальные работы по использованию ЖРД на планерах и самолетах. Эти работы продолжались всю войну и первые послевоенные годы.

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо - это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе - это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо - газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать и ждать, что там еще выкинет Элон Маск со своим SpaceX.

На прошлой неделе я описывал устройство и принцип работы всех применяемых в космонавтике химических ракетных двигателей, в том числе и жидкостный ракетный двигатель (ЖРД). Для понимания принципа работы я привел простейшую схему:

На ней все до банальности просто: трубы с компонентами топлива входят в камеру сгорания, где топливо горит, а продукты сгорания выбрасываются через сопло назад, толкая двигатель вперед.

Так как же такая простая схема на деле превращается в такое сложное переплетение всяких трубок, проводов и устройств?

Начнем с того, что компоненты топлива в камеру сгорания надо как-то подавать. Самый простой способ - подать в баки с горючим и окислителем сжатый газ, чтобы его давление вытесняло из баков жидкость в камеру сгорания.

При всей своей простоте у вытеснительной подачи есть серьезный недостаток: давление газа наддува должно быть выше рабочего давления в камере сгорания, а там ведь десятки, а то и сотни атмосфер. Для реализации такой схемы придется делать баки очень прочными, чтобы они выдержали такое чудовищное давление, а это значит, что их стенки будут очень толстыми и тяжелыми. Масса - враг номер один в ракетно-космической технике, поэтому такое решение не годится. На практике вытеснительная система подачи применяется в двигателях с рабочим давлением в камере сгорания меньше 10 атмосфер. Это могут быть двигатели малой тяги для ориентации космического аппарата и маневрирования.

Для маршевых двигателей ракетных ступеней применяют такую схему подачи топлива, где компоненты топлива под действием небольшого давления газа наддува поступают в насосы, которые в свою очередь за счет вращения крыльчаток (как обычная водяная помпа, только прочнее, мощнее и тяжелее) подают жидкости в камеру сгорания под большим давлением.

Крыльчатки насосов должны вращаться с огромной скоростью, чтобы поддерживать давление в сотни атмосфер, поэтому для их привода нужно что-то посильнее обычного электромотора. Таким приводом служит турбина - такая же крыльчатка, которая вращается под действием проходящего через нее рабочего газа. Эта крыльчатка находится на одном валу с крыльчатками насосов для горючего и окислителя, и вся конструкция называется турбонасосный агрегат (ТНА).

Но откуда берется рабочий газ? Его производит специальное устройство - газогенератор . По сути это маленький однокомпонентный ЖРД, только вместо сопла из его рабочей камеры выходит труба, подающая так называемый парогаз (смесь кислорода и раскаленного водяного пара) в турбину ТНА. После турбины отработанный парогаз выбрасывается наружу через специальный патрубок. Таким образом у нас в схеме появился бак с перекисью водорода, газогенератор, ТНА и трубопроводы, соединяющие все это добро:

Также не следует забывать про вентили, которыми автоматика управляет потоками жидкостей и газов в трубах. К каждому такому вентилю идут провода, что вносит свой вклад в этот клубок.

В более мощных двигателях в газогенератор подаются те же компоненты топлива, которые используются в основной камере сгорания. В этом случае бак с перекисью не нужен, но из основных баков выходят дополнительные трубы, а на валу ТНА появляются насосы для подачи жидкостей в газогенератор. Для запуска этой системы приходится применять пиротехнические шашки для первоначальной раскрутки ТНА.

На этом видео стендовых испытаний двигателя на 15-й секунде хорошо видно, как из патрубка рядом с соплом выбрасывается отработанный парогаз:

Двигатели, где газ после ТНА выбрасывается наружу, называются ЖРД открытого цикла. В таких двигателях можно добиваться большего давления в камере сгорания, а его ТНА меньше подвержен износу, чем в ЖРД закрытого цикла, в которых газ подается в сопло, где дожигается, принимая участие в создании тяги. ЖРД закрытого цикла обладают большим коэффициентом полезного действия (надеюсь, помните, что это такое из школьной физики? ;)).

В большинстве космических ракет используются топливные пары, в которых один или оба компонента имеют очень низкую температуру кипения (жидкий кислород и жидкий водород). Пока ракета стоит на старте, эти криогенные жидкости в баках кипят и повышают давление. Чтобы баки не разорвало, их нужно дренировать. Дренаж - это сброс в атмосферу газов, образующихся при кипении криогенных жидкостей. Для этого баки с этими жидкостями оснащаются специальной трубой с вентилем, выходящей из корпуса ракеты наружу.

На этом видео на 19.25 виден туман, идущий от ракеты сверху справа. Это дренаж кислорода. Водород при дренировании надо отводить подальше, чтобы он не образовывал с кислородом взрывоопасную смесь, поэтому его сброс виден а мачте за ракетой.

Вот, вроде бы, получили мы рабочую схему ЖРД, но только вот проблема: проработает такая схема не больше нескольких секунд, а потом камера сгорания и сопло расплавятся. Уж слишком там горячо. Значит стенки камеры сгорания и сопла надо охлаждать. Для этого применяют два способа: жидкостное охлаждение и паровую завесу.

Для осуществления первого способа стенки камеры сгорания и сопла пронизаны множеством каналов, по которым течет горючее перед тем, как попасть внутрь камеры сгорания. Система работает по принципу холодильника самогонного аппарата.

Паровая завеса - это слой паров горючего, отделяющий горящую топливную смесь от стенок камеры сгорания. Образуется он при впрыске некоторого количества горючего через специальные форсунки в стенках камеры сгорания и корпуса двигателя:

В этом видео, посвященном двигателю F-1 ракеты Сатурн-5, с 49-й секунды видно между срезом сопла и ярким пламенем некую темную область. Это и есть завеса, защищающая сопло от адского жара потока газов.

Таким образом схема ЖРД из первоначальной простоты превратилась в это:

Также стоит сказать пару слов о строении головки камеры сгорания. На этой фотографии представлена головка камеры в разрезе. Видно, что у нее довольно сложное строение.

Дело в том, что для достижения надежного зажигания и стабильного горения нужно хорошо перемешать компоненты топлива, причем, в нужной пропорции. Для этого применяются специальные схемы расположения форсунок:

Кружочками отмечены форсунки подачи окислителя, точками - горючего.
а) Шахматная схема подачи. Применяется для топливных пар, в которых горючее и окислитель смешиваются примерно один к одному.
б) Сотовая схема подачи. Самая эффективная: каждая форсунка подачи горючего окружена форсунками подачи окислителя.
в) Концентрическая схема подачи.
Обратите внимание, что во всех трех схемах внешнее кольцо форсунок подает только горючее. Это нужно для предотвращения коррозии стенок камеры сгорания под действием окислителя.

Сами форсунки тоже имеют сложную конструкцию. Например, вот такая центробежная форсунка:

В некоторые форсунки вставлен шнек - устройство наподобие винта в мясорубке. Все эти хитрости нужны для одной цели: максимально приблизить зону смешивания компонентов топлива к головке камеры сгорания, чтобы сделать камеру меньше и легче.

Теперь нам осталось поговорить о системах зажигания. Тут все достаточно просто: внутри камеры сгорания помещается некое устройство, дающее огонь. Таким устройством может быть пороховая шашка, электродуговой разрядник, газовая горелка наподобие сварочной. В последнее время проводятся эксперименты по разработке лазерных систем. В ракетах Союз пошли по совсем простому пути: пиротехнические шашки поместили в камеры сгорания на обычных деревянных палках:

А для топливной пары НДМГ+АТ (несимметричный диметилгидразин + азотный тетраоксид), используемой на ракетах Протон, системы зажигания и вовсе не нужны, так как компоненты топлива самовоспламеняются при смешивании.

И последнее, о чем мы сегодня поговорим, - запуск ЖРД в невесомости.

Это серьезная проблема, так как в невесомости жидкость в баках перемешивается с газом, слипается в пузыри и не поступает в трубопроводы. Советские конструкторы первых ракет, оснащенных третьей ступенью, пошли в обход этой проблемы: двигатель третьей ступени запускался до того, как останавливался двигатель второй ступени. Для выхода газовой струи двигателя предназначалась решетчатая конструкция между второй и третьей ступенями. Наглядно этот процесс показан на времени 11.25 здесь:

Но все время так не поделаешь: для баллистической схемы выведения и для орбитальных маневров все-таки придется запускать ЖРД в невесомости.

Самый простой вариант: заключить жидкость в баке в полимерный мешок, который предотвратит перемешивание жидкости с газом:

Но такой способ не годится для баков большого объема: слишком непрочен мешок. Поэтому система с мешком применяется для запуска двигателей малой тяги, которые работают несколько секунд, создавая ускорение, достаточное для осаживания жидкостей в больших баках.

На этом видео с самого начала виден этот процесс: три газовые струи исходят как раз от двигателей малой тяги, а через несколько секунд происходит зажигание основного двигателя.

Вот такие инженерные хитрости приходится применять для решения всех проблем, связанных с работой ЖРД. Расплатой за это становится сложность конструкции двигателя, превращающегося в такой клубок, что без бутылки и не разберешься.