Советская военная наука и тактика перед второй мировой войной. Исторический опыт в развитии военной науки

Главная Энциклопедия Словари Подробнее

ВОЕННАЯ НАУКА

система знаний о законах, военно-стратег. характере войны, путях её предотвращения, стр-ве и подготовке ВС и страны к войне, закономерностях, принципах и способах ведения вооруж. борьбы. Война как сложное социально-полит. явление изучается многими обществ., естеств. и техн. науками. Осн. предметом В.н. является вооруж. борьба. В.н. исследует проблемы войны и вооруж. борьбы с учётом зависимости её хода и исхода от соотношения экон., морально-полит., научно-техн. и воен. возможностей воюющих сторон, её формы, способы подготовки и ведения в стратег., операт. и такт. масштабах в крупномасштабной, региональной, локальной войнах и вооружённых конфликтах; состав, организацию и техн. оснащение ВС; проблемы воинского обучения и воспитания, подготовки населения и мобилизац. ресурсов к войне; содержание, формы и методы управления (руководства) войсками (силами) в мирное и воен. время.
Зародившись в глубокой древности, В.н. прошла сложный путь развития. В эпоху рабовладения появились первые военно-ист. и военно-теоретич. труды. На основе изучения войн и сражений, их анализа историки, писатели, полководцы, учёные-философы Др. Греции, Др. Рима и Др. Китая создали ряд произведений (описания воен. походов, тракта-ты, наставления), в к-рых излагались рекомендации по подготовке и ведению войн и сражений. Наибольшее значение имели труды воен. теоретиков Китая – Суньцзы, Др. Греции – Вегеция, Геродота, Ксенофонта, Онисандра, Полибия, Фронтипа, Фукиди-да.
В эпоху феодализма, до образования централиз. абсолютистских гос-в, типичными для Зап. Европы были ограниченные по целям и масштабам войны, к-рые велись немногочисл. армиями (см. Рыцарское войско). Это предопределило застой в развитии во-енно-теоретич. мысли. Крупный шаг в развитии воен. знаний был сделан в период разложения феодализма и зарождения бурж. отношений. Среди воен. теоретиков этого периода выделяется Н. Макиавелли, к-рый в трактате "О военном искусстве" (1521) изложил принципы ведения войны и закономерности развития воен. иск-ва своей эпохи. В 16 - 17 вв. разрабатываются воинские уставы, к-рые отражают опыт войн и регламентируют воинские отношения. Один из первых уставов создал Мориц Нассауский в Нидерландах. Заметный след в истории развития отеч. военно-теоретич. мысли в эту эпоху оставили Иван Пересветов, составивший в 16 в. для Ивана Грозного программу военной реформы, дьяк Посоль-ского приказа Онисим Михайлов (Родишевский), к-рый разработал в 1607 "Устав ратных, пушечных и других дел, касающихся до воинской науки..." (дополнен в 1621). В 1647 по указу царя Алексея Михайловича было издано "Учение и хитрость ратного строения пехотных людей".
В 18 - 1-й пол. 19 в. Россия выдвинула талантливых полководцев и флотоводцев, таких как Пётр I, П.С. Салтыков, П.А. Румянцев, А.В. Суворов, М.И. Кутузов, Ф.Ф. Ушаков и др., к-рые внесли большой вклад в становление и развитие отеч. теории и практики военного и военно-мор. иск-ва. Пётр I разработал одну из первых отеч. концепций подготовки гос-ва к войне, организации, обучения и воспитания рус. войск, ведения ими военных действий. Он являлся автором и редактором ряда воинских уставов, военно-теоретич. и ист. трудов (см. Устав воинский 1716, Морской устав 1720 и др.). Суворовская "Наука побеждать" была передовой теорией военного иск-ва своего времени. В Зап. Европе в этот период появилась плеяда круп-ных военных деятелей и теоретиков - Наполеон I, А. Жомини, К. Клаузевиц, Х. Мольтке (Старший) и др.
На рубеже 19 - 20 вв. были созданы массовые армии, появились и стали применяться новые средства вооруж. борьбы: танки, самолёты, скорострельные пушки, пулемёты, подводные лодки. Изменились масштабы и характер воен. действий, что обусловило новый скачок в развитии военно-теоретич. мысли. В это время среди герм. воен. теоретиков наиболее известными являлись К. Гольц и А. Шлиффен. Во Франции воен теоретик маршал Ф. Фош в трудах "О принципах войны", "О ведении войны" и "Воспоминания" осн. способом воен. действий утверждал наступление. Англ. и амер. теоретики (Ф. Коломб, А. Мэхэн и др.) решающую роль в вооруж. борьбе отводили военно-мор. силам и господство на море рассматривали как основной закон войны и необходимое условие победы над пр-ком.
В развитие рус. военно-теоретич. мысли 19 в. заметный вклад внесли А.И. Астафьев, Г.И. Бутаков, М.И. Драгомиров, Г.А. Леер, С.О. Макаров, Д.А. Милютин, Н.П. Михневич, П.С. Нахимов. Они отбрасывали отжившие военно-теоретич. взгляды и выдвигали новые концепции, создавали труды, отра-жавшие многие новые явления в воен. деле. В кон. 19 - нач. 20 в. в России были осуществлены два (второе - незаверш.) военно-энциклопедич. издания: "Энциклопедия военных и морских наук" и "Военная энциклопедия", обобщившие теорию воен. дела того времени. В последнем из них, в частности, было дано определение В.н. и сформулированы принципы воен. иск-ва (см. Энциклопедии военные).
1-я мир. война послужила новым толчком для развития В.н. Она способствовала раскрытию зако-номерностей, отражающих зависимость ведения войны от политики и экономики, а также от состояния тыла гос-ва. Во время войны был приобретён опыт подготовки и проведения фронт. и арм. наступат. и оборонит. операций, а также мор. операций, орга-низации общевойск., мор. и возд. боя. Большое развитие получила теория прорыва позиционной обо-роны. Вместе с тем не была решена в полной мере проблема развития прорыва в операт. и стратег. масштабе.
В межвоен. период создавались многомиллионные армии, развивались все виды ВС, при этом особое внимание уделялось танк. войскам и авиации. Под влиянием широкой моторизации ВС в 20 - 30-е гг. появились теории "механизированной (танковой) войны" и "воздушной войны", в т.ч. и применение возд. десантов.
Значит. роль в становлении и развитии В.н. Сов. гос-ва сыграли крупные сов. учёные, талантливые военачальники, военные специалисты. Так, М.В. Фрунзе много сделал для разработки теоретич. основ сов. воен. доктрины, общих основ В.н., стратегии и тактики, стр-ва ВС, воинского обучения и воспитания. М.Н. Тухачевский исследовал пути развития теории стратегии и основные направления развития воен. техники. А.И. Егоров и С.С. Каменев обобщили опыт Гражд. войны и сформу-лировали ряд рекомендаций по воен. стр-ву. Б.М. Шапошников написал фундаментальный труд "Мозг армии", в к-ром изложил основы стратег. управления ВС, показал значение Ген. штаба для обороны страны. А.А. Свечин дал глубокий анализ развития стратегии и тактики с древнейших времён до наших дней. Отеч. военно-теоретич. мысль обобщила также опыт подготовки и ведения совр. операций, на ос-нове к-рого в сер. 30-х гг. была разработана теория глубокой операции. Она являлась крупным достижением В.н. и получила широкое практич. применение в Вел. Отеч. войне. Наиболее весомый вклад в разработку проблем В.н. в эти годы внесли также В.А. Алафузов, Я.И. Алкснис (Астров), К.И. Величко, Г.С. Иссерсон, К.Б. Калиновский, Д.М. Карбышев, С.Н. Красильников, А.Н. Лапчинский, С.А. Меженинов, В.К. Триандафиллов, И.П. Уборевич, Е.А. Шиловский, Р.П. Эйдеман и др.
В СССР за годы Вел. Отеч. войны В.н. поднялась на новую ступень развития. Разработка гибких форм подготовки и ведения оборонит. операций с последующим переходом в контрнаступление, теория стратег. наступат. операции, решение проблемы прорыва такт. и операт. обороны с последующим ок-ружением и уничтожением крупных гр-к войск, изы-скание новых способов боевого применения и взаимо-действия различных видов ВС и родов войск, раз-работка такой эффективной формы огневого поражения пр-ка, как арт. и авиац. наступление, новых боевых порядков, всестороннее обеспечение операций, твёрдого управления войсками и мн. других вопросов внесли большой вклад в развитие теории военного иск-ва и В.н. в целом и обеспечили победу над сильным и опасным пр-ком.
После 2-й мир. войны В.н. получает дальнейшее развитие, что обусловливается ростом научно-техн. базы, появлением новых мощных средств вооруж. борьбы, прежде всего ракетно-ядерного оружия и др. средств массового поражения. Появилась реальная угроза возникновения ядерной войны. В этих условиях В.н. Сов. гос-ва была вынуждена сосредоточить усилия на исследовании возможных способов развязывания агрессором и последующего ведения такой войны. При этом важнейшее значение имел поиск путей предотвращения ядер. войны.
В 80-е гг. в СССР, в 90-х гг. 20 в. и нач. 21 в. в РФ развитие военно-теоретич. мысли было на-правлено на предотвращение как ядерной, так и обычной войны; разработку ответных мер по отраже-нию возможной агрессии; поиска наиболее эффективных путей стр-ва ВС.
В совр. структуре В.н. различают: общие основы (общую теорию) В.н., теории воен. иск-ва, стр-ва ВС, воинского обучения и воспитания, вооружения, управления ВС, воен. экономики и тыла, видов ВС, а также соответств. разделы воен. истории. Каждая из составных частей В.н. имеет собственную структуру, в к-рой помимо основ соответств. отрасли знаний можно выделить несколько разделов (частных тео-рий).
Общие основы (общая теория) В.н. включают ло-гико-методич. и общетеоретич. проблемы В.н.: предмет, структуру, задачи, внутр. и внеш. взаи-мосвязи В.н.; определение системы её категорий и методов; исследование законов и закономерностей вооруж. борьбы, стр-ва ВС, др. явлений и процессов. К новым задачам В.н. могут быть отнесены: разработка концепции нетрадиционных войн и вооружённых конфликтов, форм и способов информационного противоборства; тактико-техническое обоснование требований к принципиально новым видам оружия; научное сопровождение разработок автоматизированных систем управления войсками (силами), построенных на основе компьютерных сетей; дальнейшее развитие теории военного искусства; повышение эффективности воинского обучения на основе комплексной компьютеризации учебного процесса в военных вузах и боевой подготовки войск; совершенствование форм и методов всестороннего обеспечения войск; оптимизация форм и методов военно-научного исследования, развитие военной системологии, военной футурологии и др. новых отраслей В.н.; совершенствование методологии В.н.
Теория военного искусства – является частью В.н. и включает теории стратегии, операт. иск-ва и тактики. Теория стратегии исследует военно-стратег. характер войны, законы, принципы и способы вооруж. борьбы в стратег. масштабе. Теория операт. иск-ва изучает характер, закономерности, принципы и способы подготовки и ведения общевой-сковых (общефлотских) совместных и самостоят. опе-раций (боевых действий) операт. объед. видов ВС. Теория тактики занимается вопросами подготовки и ведения боя подразд., частями и соед. на суше, море и в воздухе. В соответствии с этим она включает теорию тактики общевойск. боя и теорию тактики видов и родов ВС, а также спец. рода войск, с максимальным использованием возможностей новых средств вооружённой борьбы.
Теория строительства ВС – важнейшая составная часть военного строительства. Она исследует про-блемы поддержания войск и сил флота в высокой степени боевой готовности к выполнению боевых за-дач и к отмобилизованию; определения и совершенствования наиболее целесообразной организац. структуры ВС; определяет и обосновывает принципы и методы комплектования ВС, их техн. оснащения, подготовки резервов; разрабатывает системы подготовки воен. кадров и прохождения ими воен. службы; готовит рекомендации по организации службы войск и расквартированию войск (сил) в мирное и воен. время и др.
Теория воинского обучения и воспитания разрабатывает формы и методы операт. и боевой подготовки, формирования у воинов высоких морально-боевых качеств, их воинского воспитания в процессе боевой подготовки, воен. службы, укрепления воинской дисциплины, слаживания подразд., частей (кораблей) и соед. в целях обеспечения их высокой боеспособности и боеготовности.
Теория вооружения разрабатывает научно обоснованные выводы и рекомендации для проведения единой военно-техн. политики в ВС.
Теория управления ВС исследует закономерности, принципы и методы работы командования (командиров, начальников), штабов и др. органов управления по поддержанию постоянной боевой готовности войск (сил), по подготовке операций и ведению боевых действий, руководству войсками (силами) при выполнении поставленных задач, а также по руководству боевой подготовкой, жизнью и дея-тельностью войск (сил) в мир. и воен. время.
Теория военной экономики и тыла ВС исследует характер, объём, способы накопления и использования материальных средств, необходимых для обеспечения деятельности ВС и ведения прогнозируемой войны, воен. аспекты перевода страны на воен. время, пути повышения устойчивости хоз.-экон. комплекса страны в ходе войны.
Теория видов и родов ВС исследует основы их подготовки и использования.
Военная история в границах предмета В.н. изу-чает историю войн, историю воен. мысли, воен. иск-ва, историю строительства ВС, вооружения и др. областей воен. дела.
В.н. также связана с обществ., естеств. и техн. науками, что приводит к выделению в них во-ен. проблематики и формированию спец. отраслей знаний, направленных на решение задач в интересах укрепления обороны страны. В области обществ. наук важное значение для ВС имеют теория воен. права, воен. психология, воен. педагогика и др. Развитие воен. проблематики в области естеств. наук привело к появлению таких военно-специальных наук, как воен. география, воен. картография, воен. геодезия, воен. топография, воен. гидрометеороло-гия, воен. навигация, воен. медицина и др. В об-ласти техн. наук выявились отрасли знаний, к-рые называют военно-техн. науками. Являясь по своей сути, как и все техн. науки, прикладными, они исследуют техн. проблемы, к-рые связаны прямо или косвенно с воен. потребностями. Сюда относят теории воен. связи, воен. радиоэлектроники, воен. кибернетики, баллистики, стрельбы, бомбометания и др. В.н. и военные разделы знаний (проблематика) др. наук могут в совокупности рассматриваться как взаимосвязанная система знаний.

«Сороковые, роковые», - сказал известный поэт, участник Великой Отечественной войны, о первой половине «сороковых». Но для идеологической атмосферы советского общества роковой оказалась и вторая половина этого десятилетия. Юдин Б.Г. Методологический анализ как направление изучения науки. М., 1986

Цена победы, это конечно же узловая проблема истории Войны. Однако наша историография все еще сводит дело лишь к значению победы. Не изжиты пока и известные по военным временам представления, «какая война без жертв», «война спишет все», «победителей не судят». Какие бы жертвы не были, великие умы того времени, высказывающие своё, непохожее на мнение правящих верхов мнение, или простой солдат отдавший свою жизнь за будущее своей родины или вообще простой человек. И хотя сегодня уже трудно кого-либо убедить в том, будто не было грубых просчетов руководства СССР накануне и в ходе войны, неоправданных репрессий в отношении работников науки и интеллигенции, мы нередко все еще пытаемся объединить добро и зло в ее истории под высокими словами «героическое и трагическое». Наука оказала исключительную роль и исключительное мужество армии и народа, их способность превзойти противника в науке, технике и военном искусстве. До сих пор, неизвестны точное число погибших военнослужащих, умерших в лагерях ученых, расстрелянных оппозиционеров. Хотя в годы Великой Отечественной войны именно наука внесла значительный вклад в развитие оборонного потенциала СССР. Во второй половине 1941 года на восток были эвакуированы 182 члена корреспондента АН СССР, 76 научно-исследовательских институтов, в составе которых работали 118 академиков и тысячи научных сотрудников. Их деятельность направлял Президиум Академии наук, перебазированный в Свердловск. В городе Свердловске, в мае 1942 года на общем собрании академии были обсуждены задачи, вставшие перед учеными в условиях войны. Ведущими направлениями научных исследований явились разработка военно-технических проблем, научная помощь промышленности, мобилизация сырьевых ресурсов, для чего создавались межотраслевые комиссии и комитеты. Так, в конце 1941 года была создана комиссия по мобилизации ресурсов Урала, курирующая также запасы Сибири и Казахстана. В главе комиссии стояли академики Байков А.А., Бардин И.П., Струмилин С.Г., Павлов М А. и др. В тесном сотрудничестве с инженерами, ученые нашли методы очень быстрой, можно сказать скоростной плавки металла в мартеновских печах, литья стали высокого качества, получения проката нового стандарта. Несколько позднее специальная комиссия ученых во главе с академиком Е.А. Чудаковым внесла важные предложения по мобилизации ресурсов Поволжья и Прикамья. Благодаря ученым геологам А.Е. Ферсману, К.И. Сатпаеву, Обручеву В.А. и другими учеными, были разведаны новые месторождения железной руды в Кузбассе. Были найдены новые источники нефти в Башкирии, так же месторождение молибденовых руд в Казахстане. Значительным был вклад ученых математиков П.С. Александрова, С.Н. Бернштейна, И.М. Виноградова, Н.И. Мусхелишвили. Активно трудились на оборону физики А.Ф. Иоффе, С.И. Вавилов, П.Л. Капица, Л.И. Мандельштам, химики Н.Д. Зелинский, И.В. Гребенщиков, А.Н. Несмеянов, А.Е. Фаворский, Н.Н. Семенов. Ученые А. П. Александров, Б.А. Гаев, А.Р. Регель и другие успешно решили проблему противоминной защиты кораблей. В 1943 году была разработана технология выделения плутония из облученного урана. Осенью 1944 года под руководством академика И.В. Курчатова был создан вариант атомной бомбы со сферическим подрывом «внутрь», а в начале 1945 года был пущен комбинат по производству плутония.Ученые Советского союза, достигли в то время значительных успехов в области биологии, медицины и сельского хозяйства. Они находили новые растительные виды сырья для промышленности, изыскивали пути повышения урожайности продовольственных и технических культур. Так, в восточных районах страны было в срочном порядке освоено возделывание сахарной свеклы. Огромное значение имела деятельность ученых медиков таких как, Н.Н. Бурденко, А.Н. Бакулева, Л.А. Орбели, А.И. Абрикосова, в том числе С.С. Юдина и А.В. Вишневского и других, вводивших в практику новые способы и средства лечения больных и раненых воинов. В.К.Модестов доктор медицинских наук сделал ряд важных оборонных изобретений, в том числе замену гигроскопической ваты целлюлозной, использование турбинного масла как основы для изготовления мазей и другого материала. Необходимым условием успешного развития народного хозяйства страны явилась непрерывная подготовка новых кадров в вузах и техникумах. В 1941году число вузов уменьшилось с 817 тыс. до 460 тыс., прием в них сократился вдвое, численность студентов уменьшилась в 3,5 раза, а сроки обучения составили от 3-х до 3,5 лет. Однако к концу войны численность студентов, особенно в результате возросла при приеме женщин и приблизилась к довоенному уровню. Юдин Б.Г. Методологический анализ как направление изучения науки. М., 1986.

В годы войны, хотя и было очень тяжело, плодотворно трудились создатели оружия и военной техники. Особое внимание уделялось совершенствованию качества артиллерийских систем и минометов. В этой области большая заслуга принадлежит ученым и конструкторам В. Г. Грабину, И. И. Иванову, М. Я. Крупчатникову, и другим. Успехи же в производстве стрелкового вооружения были достигнуты при ведущей роли конструкторов Н. Е. Березина, В. А. Дегтярева, С. Г. Симонова, Ф. В. Токарева, Г. С. Шпагина. Так же cоветским ученым удалось во много раз сократить сроки разработки и внедрения новых образцов вооружения. Так, хорошо зарекомендовавшая себя как 152-я гаубица была сконструирована и изготовлена в 1943 году за 18 дней, а массовый выпуск ее освоен за 1,5 месяца. Где такое было видано! Около половины всех типов стрелкового оружия и подавляющее количество новых образцов артиллерийских систем, состоящих на вооружении в действующей армии в 1945 году, были созданы и пущены в серии за время войны. Калибры танковой и противотанковой артиллерии увеличились почти вдвое, а бронепробиваемость снарядов примерно в 5 раз. СССР превосходил Германию по объему среднегодового выпуска полевой артиллерии более чем в 2 раза, минометов -- в 5 раз, противотанковых орудий -- в 2,6 раза. Усилиями советских танкостроителей, особенно рабочих и инженеров уральского “Танкограда”, сравнительно быстро было преодолено преимущество противника в бронетанковой технике. К 1943 году стал нарастать перевес советских Вооруженных Сил в танках и самоходно-артиллерийских установках. Отечественные танки и САУ по своим боевым характеристикам значительно превосходили зарубежные аналоги. Огромная заслуга в их создании принадлежала Н.А. Астрову, Н.Л. Духову, Ж. Я. Котину, М. И. Кошкину, В.В. Крылову, Н.А. Кучеренко, А.А.Морозову, Л.С.Троянову и другим. Со второй половины 1942 года неуклонно наращивался выпуск самолетов и авиадвигателей. Самым массовым самолетом советских ВВС стал штурмовик Ил-2. Большинство советских боевых самолетов превосходили по своим характеристикам самолеты германских ВВС. Во время войны в серийное производство поступили 25 моделей самолетов (включая модификации), а также 23 типа авиадвигателей. В создание и усовершенствование новых боевых машин внесли вклад авиаконструкторы, М.И. Гуревич, С.В. Ильюшин, С.А. Лавочкин, А.И. Микоян, В.М. Мясищев, В.М. Петляков, Н.Н. Поликарпов, П.О. Сухой, А.Н. Туполев, А.С. Яковлев, создатели авиамоторов, В. Я. Климов, А. А. Микулин, С. К. Туманский.

В эпоху Возрождения в культуре на первое место снова, как в эпоху античности, выходят рациональные, философско-научные представления, с точки зрения которых начинают переосмысляться средневековые понятия. Другая важная особенность ренессансной культуры – новое понимание человека. Человек эпохи Возрождения сознает себя уже не в качестве твари Божьей, а свободным мастером, поставленным в центр мира, который по своей воле и желанию может стать или низшим, или высшим существом. Хотя человек признает свое Божественное происхождение, он и сам ощущает себя творцом.

Обе указанные особенности ренессансной культуры приводят также к новому пониманию природы, науки и человеческого действия. На место Божественных законов постепенно становятся природные, на место скрытых Божественных сил, процессов и энергий – скрытые природные процессы, а природа сотворенная и творящая превращается в понятие природы как источника скрытых естественных процессов, подчиняющихся законам природы. Наука и знания теперь понимаются не только как описывающие природу, но и выявляющие, устанавливающие ее законы. В данном случае выявление законов природы – это только отчасти их описание, что важнее, выявление законов природы предполагает их конституирование. В понятии закона природы проглядывают идеи творения, а также подобия природного и человеческого (природа принципиально познаваема, ее процессы могут служить человеку).

Наконец, необходимым условием деятельности человека, направленной на использование сил и энергий природы, является предварительное познание "законов природы". Другое необходимое условие – определение пусковых действий человека, так сказать, высвобождающих, запускающих процессы природы. Однако Возрождение лишь создает предпосылки формирования науки в современном ее понимании, а ее мировоззренческие основания и методологические принципы формулируются в трудах философов Нового времени. Ф. Бэкон объявляет природу основным объектом новой науки и условием практического (инженерного) действия, производящего "новую природу", источником естественных процессов, однако вызванных (запущенных) практическими действиями человека. С этого периода начинает формироваться понимание природы как бесконечного резервуара материалов, сил, энергий, которые человек может использовать при условии, если опишет в науке законы природы. Так создаются основы для формирования инженерного отношения к миру.

Основными составляющими инженерной деятельности являются конструирование и проектирование. Конструирование– вид инженерной работы, которая осуществляется в различных областях человеческой деятельности: в проектировании технических систем, дизайне, моделировании одежды и др. В технике конструирование является обязательной составной частью процесса проектирования и связано с разработкой конструкции технической системы, которая затем материализуется при изготовлении на производстве. Конструирование включает анализ и синтез различных вариантов конструкции, их расчёты, выполнение чертежей и др. Разработка вариантов конструкции обычно связана с постановкой и решением задач технического творчества. На уровне конструирования происходит реализация технической идеи в рамках опытно-конструкторской разработки, которая связана с постановкой и решением задач технического творчества. В процессе конструирования создается чертёж технического изделия или системы, рассчитываются конкретные технические характеристики и фиксируются специфические условия реализации (характер материала, производительность, степень экологичности, экономическая эффективность и др.). Результат конструкторской разработки – техническое изделие, готовая конструкция. Конструирование сочетается с разработкой соответствующих технологических условий, т.е. методов и технических условий реализации конкретной модели. Поэтому конструирование связано с технологией, которая выявляет механизм организации процесса по производству конкретного изделия. Проектирование - деятельность человека или организации по созданию проекта, то есть прототипа, прообраза предполагаемого или возможного объекта, состояния; комплекта документации, предназначенной для создания определённого объекта, его эксплуатации, ремонта и ликвидации, а также для проверки или воспроизведения промежуточных и конечных решений, на основе которых был разработан данный объект.

Для инженерной деятельности были необходимы специальные знания. Сначала это были знания двоякого рода – естественнонаучные (отобранные или специально построенные) и собственно технологические (описание конструкций, технологических операций и т.д.). Пока речь шла об отдельных изобретениях, проблем не возникало. Однако начиная с XVIII столетия складывается промышленное производство и потребность в тиражировании и модификации изобретенных инженерных устройств (парового котла и прядильных машин, станков, двигателей для пароходов и паровозов и т.д.). Резко возрастает объем расчетов и конструирования в силу того, что все чаще инженер имеет дело не только с разработкой принципиально нового инженерного объекта (т.е. изобретением), но и с созданием сходного (модифицированного) изделия (например, машина того же класса, но с другими характеристиками – иная мощность, скорость, габариты, вес, конструкция и т.д.). Другими словами, инженер теперь занят и созданием новых инженерных объектов, и разработкой целого класса инженерных объектов, сходных с изобретенными. В познавательном отношении это означало появление не только новых проблем в связи с увеличившейся потребностью в расчетах и конструировании, но и новых возможностей. Разработка поля однородных инженерных объектов позволяла сводить одни случаи к другим, одни группы знаний к другим. Если первые образцы изобретенного объекта описывались с помощью знаний определенной естественной науки, то все последующие, модифицированные, сводились к первым образцам. В результате начинают выделяться (рефлексироваться) определенные группы естественнонаучных знаний и схем инженерных объектов, – те, которые объединяются самой процедурой сведения. Фактически это были первые знания и объекты технических наук, но существующие пока еще не в собственной форме: знания в виде сгруппированных естественнонаучных знаний, участвующих в сведениях, а объекты в виде схем инженерного объекта, к которым такие группы естественнонаучных знаний относились. На этот процесс накладывались два других: онтологизация и математизация .

Онтологизация представляет собой поэтапный процесс схематизации инженерных устройств, в ходе которого эти объекты разбивались на отдельные части и каждая замещалась "идеализированным представлением" (схемой, моделью). Например, в процессе изобретения, расчетов и конструирования машин (подъемных, паровых, прядильных, мельниц, часов, станков и т.д.) к концу XVIII, началу XIX столетия их разбивали, с одной стороны, на крупные части (например, Ж.Кристиан выделял в машине двигатель, передаточный механизм, орудие), а с другой – на более мелкие (так называемые "простые машины" – наклонная плоскость, блок, винт, рычаг и т.д.). Подобные идеализированные представления вводились для того, чтобы к инженерному объекту можно было применить, с одной стороны, математические знания, с другой – естественнонаучные знания. По отношению к инженерному объекту такие представления являлись схематическими описаниями его строения (или строения его элементов), по отношению к естественной науке и математике они задавали определенные типы идеальных объектов (геометрические фигуры, векторы, алгебраические уравнения и т.д.; движение тела по наклонной плоскости, сложение сил и плоскостей, вращение тела и т.д.).

Замещение инженерного объекта математическими моделями было необходимо и само по себе как необходимое условие изобретения, конструирования и расчета и как стадия построения нужных для этих процедур идеальных объектов естественной науки.

Накладываясь друг на друга, описанные здесь три основных процесса (сведения, онтологизации и математизации) и приводят к формированию первых идеальных объектов и теоретических знаний технической науки.

Дальнейшее развитие технической науки происходило под влиянием нескольких факторов. Один фактор – сведение всех новых случаев (т.е. однородных объектов инженерной деятельности) к уже изученным в технической науке. Подобное сведение предполагает преобразование изучаемых в технической науке объектов, получение о них новых знаний (отношений). Почти с первых шагов формирования технической науки на нее был распространен идеал организации фундаментальной науки. В соответствии с этим идеалом знания отношений трактовались как законы или теоремы, а процедуры еe получения – как доказательства. Проведение доказательств предполагало не только сведение новых идеальных объектов к старым, уже описанным в теории, но и разделение процедур получения знаний на компактные, обозримые части, что всегда влечет за собой выделение промежуточных знаний. Подобные знания и объекты, получившиеся в результате расщепления длинных и громоздких доказательств на более простые (четкие), образовали вторую группу знаний технической науки (в самой теории они, естественно, не обособлялись в отдельные группы, а чередовались с другими). В третью группу вошли знания, позволившие заменить громоздкие способы и процедуры получения отношений между параметрами инженерного объекта процедурами простыми и изящными. Например, в некоторых случаях громоздкие процедуры преобразования и сведения, полученные в двух слоях, существенно упрощаются после того, как исходный объект замещается сначала с помощью уравнений математического анализа, затем в теории графов, и преобразования осуществляются в каждом из слоев. Характерно, что последовательное замещение объекта технической науки в двух или более разных языках ведет к тому, что на объект проецируются соответствующие расчленения и характеристики таких языков (точнее, их онтологических представлений). В результате в идеальном объекте технической теории "сплавляются" (через механизм рефлексии и осознания) характеристики нескольких типов: а) характеристики, перенесенные на этот объект в ходе модельного замещения инженерного объекта (например, знание о том, что колебательный контур состоит из источников тока, проводников, сопротивлений, емкостей и индуктивностей и все эти элементы соединены между собой определенным образом); б) характеристики, прямо или опосредованно перенесенные из фундаментальной науки (знания о токах, напряжениях, электрических и магнитных полях, а также законах, их связывающих); в) характеристики, взятые из математического языка первого, второго..., n-го слоя (например, в теории электротехники говорят о самой общей трактовке уравнений Кирхгофа, данной в языке теории графов). Все эти характеристики в технической теории так видоизменяются и переосмысляются (одни, несовместимые, опускаются, другие изменяются, третьи приписываются, добавляются со стороны), что возникает принципиально новый объект – собственно идеальный объект технической науки, в своем строении воссоздавший в сжатом виде все перечисленные типы характеристик. Второй процесс, существенно повлиявший на формирование и развитие технической науки – это процесс математизации. С определенной стадии развития технической науки исследователи переходят от применения отдельных математических знаний или фрагментов математических теорий к применению в технической науке целых математических аппаратов (языков). К этому их толкала необходимость осуществлять в ходе изобретения и конструирования не только анализ, но и синтез отдельных процессов и обеспечивающих их конструктивных элементов. Кроме того, они стремились исследовать все поле инженерных возможностей, т.е. старались понять, какие еще можно получить характеристики и отношения инженерного объекта, какие в принципе можно построить расчеты. В ходе анализа инженер-исследователь стремится получить знания об инженерных объектах, описать их строение, функционирование, отдельные процессы, зависимые и независимые параметры, отношения и связи между ними. В процессе синтеза он на основе произведенного анализа конструирует и ведет расчет (впрочем, операции синтеза и анализа чередуются, определяя друг друга).

Каковы же условия применения в технических науках математических аппаратов? Прежде всего для этого необходимо вводить идеальные объекты технических наук в онтологию, соответствующего математического языка, т.е. представлять их как состоящие из элементов, отношений и операций, характерных для объектов интересующей инженера математики. Но, как правило, идеальные объекты технической науки существенно отличались от объектов выбранного математического аппарата. Поэтому начинается длительный процесс дальнейшей схематизации инженерных объектов и онтологизации, заканчивающийся построением таких новых идеальных объектов технической науки, которые уже могут быть введены в онтологию определенной математики. С этого момента инженер-исследователь получает возможность: а) успешно решать задачи синтеза-анализа, б) исследовать всю изучаемую область инженерных объектов на предмет теоретически возможных случаев, в) выйти к теории идеальных инженерных устройств (например, теории идеальной паровой машины, теории механизмов, теории радиотехнического устройства и т.д.). Теория идеального инженерного устройства представляет собой построение и описание (анализ) модели инженерных объектов определенного класса (мы их назвали однородными), выполненную, так сказать, на языке идеальных объектов соответствующей технической теории. Идеальное устройство – это конструкция, которую исследователь создает из элементов и отношений идеальных объектов технической науки, но которая является именно моделью инженерных объектов определенного класса, поскольку имитирует основные процессы и конструктивные образования этих инженерных устройств. Другими словами, в технической науке появляются не просто самостоятельные идеальные объекты, но и самостоятельные объекты изучения квазиприродного характера. Построение подобных конструкций-моделей существенно облегчает инженерную деятельность, поскольку инженер-исследователь может теперь анализировать и изучать основные процессы и условия, определяющие работу создаваемого им инженерного объекта (в частности, и собственно идеальные случаи).

Если теперь кратко суммировать рассмотренный этап формирования технических наук классического типа, то можно отметить следующее. Стимулом для возникновения технических наук является появление в результате развития промышленного производства областей однородных инженерных объектов и применение в ходе изобретений, конструирования и расчетов знаний естественных наук. Процессы сведения, онтологизации и математизации определяют формирование первых идеальных объектов и теоретических знаний технической науки, создание первых технических теорий. Стремление применять не отдельные математические знания, а целиком определенные математики, исследовать однородные области инженерных объектов, создавать инженерные устройства, так сказать, впрок приводит к следующему этапу формирования. Создаются новые идеальные объекты технических наук, которые уже можно вводить в математическую онтологию; на их основе разворачиваются системы технических знаний и, наконец, создается теория "идеального инженерного устройства". Последнее означает появление в технических науках специфического квазиприродного объекта изучения, т.е. техническая наука окончательно становится самостоятельной.

Последний этап формирования технической науки связан с сознательной организацией и построением теории этой науки. Распространяя на технические науки логические принципы научности, выработанные философией и методологией наук, исследователи выделяют в технических науках исходные принципы и знания (эквивалент законов и исходных положений фундаментальной науки), выводят из них вторичные знания и положения, организуют все знания в систему. Однако в отличие от естественной науки в техническую науку включаются также расчеты, описания технических устройств, методические предписания. Ориентация представителей технической науки на инженерию заставляет их указывать "контекст", в котором могут быть использованы положения технической науки. Расчеты, описания технических устройств, методические предписания как раз и определяют этот контекст.

Технические науки формировались в тесном взаимодействии со становлением инженерного образования. Рассмотрим этот процесс на примере России.

Техническому образованию в России положили начало Инженерная (1700 г.) и Математико-навигатская школы (1701 г.). Методика преподавания носила характер скорее ремесленного ученичества: инженеры-практики объясняли отдельным студентам или небольшим группам студентов, как нужно возводить тот или иной тип сооружений или машин, как осуществлять практически тот или иной вид инженерной деятельности. Новые теоретические сведения сообщались лишь по ходу таких объяснений, учебные пособия носили описательный характер. В то же время профессия инженера усложнялась и практика предъявляла новые требования к подготовке квалифицированных инженерных кадров.

Лишь после основания Г. Монжем в 1794 г. Парижской политехнической школы, которая с самого начала своего основания ориентировалась на высокую теоретическую подготовку студентов, ситуация в инженерном образовании меняется. По образцу этой школы строились многие инженерные учебные заведения Германии, Испании, Швеции, США. В России по ее образцу в 1809 г. был создан Институт корпуса инженеров путей сообщения, начальником которого был назначен ученик Монжа А.А.Бетанкур. Он разработал проект, в соответствии с которым были учреждены училища для подготовки среднего технического персонала: военно-строительная школа и школа кондукторов путей сообщения в Петербурге. Позже (в 1884 г.) эта идея была развита и реализована выдающимся русским ученым, членом Петербургской академии наук И.А.Вышнеградским, по мысли которого техническое образование должно быть распространено на все ступени промышленной деятельности, высшие школы, готовящие инженеров, средние, готовящие техников (ближайших помощников инженеров), и училища для мастеров, фабричных и заводских рабочих. К концу XIX века научная подготовка инженеров, их специальное, именно высшее техническое образование становятся настоятельно необходимыми. К этому времени многие ремесленные, средние технические училища преобразуются в высшие технические школы и институты, большое внимание в которых стало уделяться именно теоретической подготовке будущих инженеров.

Кроме учебных заведений распространение технических знаний ставили своей целью различные технические общества. Например, Русское техническое общество, образованное в 1866 г., в соответствии со своим уставом имело целью содействовать развитию техники и технической промышленности в России как « посредством чтений, совещаний и публичных лекций о технических предметах», так и через «ходатайства перед правительством о принятии мер, могущих иметь полезное влияние на развитие технической промышленности».

Вопросы для контроля и самопроверки:

1. Каковы причины возникновения и обособления технических наук?

2. Опишите основные характеристики классических технических наук.

3. Как формирование и развитие технических наук связано с инженерным образованием?

Предпосылки к зарождению военно-научных органов в России появляются с образованием в русской армии Генерального штаба 30 января 1763 г. Фактически императрицей Екатериной II был создан военный орган, способный осуществлять единое, централизованное управление вооруженными силами государства.

При нем появились первые военные библиотеки и архивы. В них хранились исторические документы — описания хода сражений, планы и карты с диспозицией войск. На основе этих материалов разрабатывались инструкции и артикулы по обучению войск для действий на поле боя.

В дальнейшем большое значение для создания военно-научных органов оказало образование 8 сентября 1802 г. Военного министерства России. Всего через 10 лет, 27 января 1812 г., впервые в военной истории нашей страны при этом ведомстве был создан Военный ученый комитет (ВУК). В его состав вошли шесть непременных членов (двое — по части квартирмейстерской, двое — по части артиллерийской и еще двое - по части инженерной), а также почетные члены и члены-корреспонденты из России и других стран.

Согласно Уставу первый ВУК выполнял следующие задачи:

—собирал «все новые издаваемые лучшие сочинения о воинском искусстве и разных частях, к нему принадлежащих», назначал «лучшие и полезнейшие из них к переводу на Российский язык»;

—рассматривал «проекты и предложения по ученой воинской части и представлял о них мнения свои Военному Министру»;

—издавал Военный журнал, производил экзамены всем чиновникам, «вступающим в ученые корпусы Военного Департамента»;

—участвовал в надзоре за всеми «учеными заведениями по Квартирмейстерской, Инженерной и Артиллерийской части...».

Цель учреждения ВУК заключалась в «усовершенствовании ученой части военного искусства и в распространении военно-научных сведений в войсках». Можно сказать, что она актуальна и в настоящее время. В своей истории Комитет неоднократно менял имя и структуру, но направление деятельности — научное — оставалось неизменным.

Во второй половине XIX века созданный еще Екатериной ВУК прекратил существование. На смену ему пришел Совещательный комитет, который позже был переименован в Военный ученый комитет Главного штаба. В зону ответственности этого органа входила ученая деятельность Генштаба, корпус военных топографов, а также образование в армии и военные архивы.

Кроме того, Комитет занимался распределением денежных субсидий на издание военно-исторических работ. К примеру, Военным ученым комитетом были изданы такие крупные военно-теоретические работы, как «Северная война. Документы 1705-1708 гг.», «Письма и бумаги А.В. Суворова, Г.А. Потемкина и П.А. Румянцева 1787-1789 гг.». Глубоко изучались петровское военное наследие, шведские войны, война 1812 г. В 1878 г. при Военном ученом комитете была создана военно-историческая комиссия для описания русско-турецкой войны 1877-1878 гг.

В 1900 г. ВУК был расформирован. В начале XX века его функции исполняли Комитет Главного штаба, Комитет по образованию войск, Комитет Генерального штаба. Эти органы имели широкие полномочия и были способны руководить разработкой фундаментальных трудов по военной стратегии, тактике и военной истории. В них трудились видные российские военные ученые, которые создали многочисленные военно-теоретические и военно-исторические труды, актуальные до настоящего времени.

Позже, в годы Великой Отечественной войны, на базе отделения оперативной подготовки Генштаба создается Отдел по использованию опыта войны. В его задачи входило изучение и обобщение боевого опыта; разработка общевойсковых наставлений и инструкций по ведению боя; подготовка приказов, директивных указаний НКО и ГШ по использованию опыта войны; описание операций Великой Отечественной войны для «Сборника материалов по изучению опыта войны».

После Победы исследованием исторического опыта и разработкой военно-теоретических проблем при Генштабе занимались Управление по использованию опыта войны, Военно-исторический отдел, Архив Генерального штаба и Архив Красной Армии.

Именно эти органы составили основу для образования в 1953 г. Военно-научного управления Генерального штаба. Оно просуществовало четверть века, было расформировано и вновь создано уже в 1985 г. За 70 лет своей истории (1925-1995 гг.) военно-научные органы претерпели около 40 изменений.

25 октября 1999 г. был сформирован Военно-научный комитет Генерального штаба Вооруженных Сил Российской Федерации. Ровно через 10 лет директивой Министра обороны Российской Федерации от 8 сентября 2009 г. на его основе был создан Военно-научный комитет Вооруженных Сил Российской Федерации.

В настоящий момент ВНК ВС РФ - это орган управления военной наукой, который непосредственно подчиняется начальнику Генерального штаба Вооруженных Сил Российской Федерации — первому заместителю Министра обороны Российской Федерации.

Военно-научный комитет (ВНК) Вооруженных Сил Российской Федерации предназначен для решения задач научного обоснования перспективных направлений строительства, развития, подготовки, применения и обеспечения Вооруженных Сил Российской Федерации в реальных и прогнозируемых условиях военно-политической, экономической и демографической обстановки.

Основные задачи:

  • опережающее развитие теории строительства, подготовки и применения Вооруженных Сил, исследование условий и выработка рекомендаций по совершенствованию их структуры, совершенствованию форм и способов боевого применения группировок войск, развитию вооружения и военной техники, исследованию других наиболее актуальных вопросов;
  • совершенствование системы планирования научных исследований и координации деятельности научно-исследовательских организаций и вузов Министерства обороны Российской Федерации, научных организаций РАН, других министерств и ведомств, ведущих исследования по оборонной тематике;
  • совершенствование военно-научного комплекса Вооруженных Сил, его состава, структуры и штатной численности, с учетом существующих потребностей, укрепление нормативной правовой базы, определяющей условия и порядок функционирования комплекса;
  • развитие моделирующей и лабораторно-экспериментальной базы, дальнейшая автоматизация процессов проведения исследований, в том числе системы информационного обеспечения;
  • руководство военно-исторической работой, научно-информационной и издательской деятельностью в Вооруженных Силах;
  • организация и координация военно-научного сотрудничества с иностранными государствами.

Статья Эриха Шнейдера, опубликованная в сборнике "Итоги второй мировой войны" (русский перевод опубликован в 1957 г.) представляет несомненный интерес для аналитика. Хотя бы потому, что в ней содержатся уникальные данные о малоизвестной операции Пейпер Клипс, проведенной союзническими войсками в 1946 г., в ходе которой у Германии и Японии были изъяты мощнейшие запасы патентной и научно-технической документации, а также были вывезены за рубеж ценнейшие научные кадры.

Статья посвящена проблемам, связанным с отсутствием должной государственной координации научной деятельности, низким качеством информационного обеспечения научной работы, а также проблеме разобщенности коммерческих научных подразделений. Это все то, что было инициировано в России переходом к рыночной экономике.

Статья также представляет интерес и для тех, кого интересует история, в частности - история научно-технического прогресса. В статье раскрывается подоплека того мощного послевоенного технологического скачка, который был совершен США и еще больше увеличил технологическое отставание СССР.

Интересна статья также и тем, что она вошла в одно из тех изданий, которое не подверглось идеологической адаптации и приглаживанию - вся идеологическая (впрочем, весьма спокойная и конструктивная) компонента была приведена во введении к сборнику. Поэтому, в статье сохранились и те оценки, которые давались Советскому Союзу его противниками по холодной войне.

Здесь статья приведена по тексту:

Шнейдер Э. Расцвет и упадок немецкой науки в период второй мировой войны // Итоги второй мировой войны. Сборник статей / Пер. с нем. - М.: Издательство иностранной литературы, 1957.

Эрих Шнейдер, генерал-лейтенант в отставке, инженер


Расцвет и упадок немецкой науки в период второй мировой войны

(Оригинальный - немецкий - текст статьи вышел в книге "Bilanz Des Zweiten Weltkrieges" в 1953 г.)

"Исследование есть фундамент технического превосходства над противником.
Исследование есть основа для всемирного соревнования". Проф. П. Тиссен

С тех пор как последние мировые войны разрушили старую форму «героического сражения» между воинами и заменили ее «войной моторов», а солдат стал «ожидать своего часа» под шквалом ураганного огня, с тех пор как стало достаточно лишь нажать кнопки, открывающие бомбовые люки, чтобы моментально исчезли в пожаре и дыму памятники веками создававшейся культуры, с тех пор как атомные бомбы, сброшенные на Хиросиму и Нагасаки, доказали, что одним ударом можно уничтожать сотни тысяч ни в чем не повинных людей, с тех пор, наконец, когда самоуничтожение человечества в современной атомной войне стало теоретической возможностью, можно с уверенностью сказать, что техника в корне изменила и формы и весь характер войны. Но в основе всякой техники лежит наука, больше того, техника-это сама наука. А это значит, что ход современной войны и, следовательно, судьбы ведущих ее народов решающим образом зависят от научных достижений и от потенциальных возможностей народов в области техники.

Старинная поговорка «В войне молчат музы», под которой, кроме всего прочего, подразумевается и ослабление духовной деятельности народа, в наш век совершенно неуместна. С лихорадочной поспешностью и максимальным напряжением сил ведутся работы в лабораториях и исследовательских институтах воюющих сторон, чтобы не только нейтрализовать технический прогресс противника за счет создания новых видов вооружения, но и превзойти его, что в свою очередь является для противника импульсом к новым изысканиям. Таким образом, современная война с точки зрения роста технических возможностей является неким подобием маятника, который с каждым взмахом поднимается на еще большую высоту. Такое явление наблюдается не только в области техники. В век идеологической борьбы и борьбы взглядов и мировоззрений решающее значение имеет также и то, какое идеологическое оружие и какие силы могут вызвать подъем во всех областях науки. Поэтому «Итоги второй мировой войны» не могут быть написаны без того, чтобы все функции науки в этой эпохе остались неосвещенными.

Подводная война Германии против Англии и Америки, начавшаяся так эффективно, фактически была сведена на нет превосходством противника в радиолокационной технике, которое буквально парализовало усилия самоотверженных и храбрых немецких подводников. В воздушной битве за Англию технические данные германских истребителей оказались недостаточными для того, чтобы надежным образом защитить свои бомбардировщики. Когда впоследствии на экранах радаров противника, несмотря на темную ночь, туман и облака, стали различимы очертания городов и искомых целей, противовоздушная оборона германского жизненного пространства потеряла всякий смысл, а немецкая авиация, несмотря на все мужество ее солдат и офицеров, все более и более сдавала свои позиции.

На основании изучения всех этих событий возникает роковой вопрос: оправдала ли себя в этой войне германская наука? (По окончании войны, по самым осторожным подсчетам, победителями было конфисковано 346 тыс. германских патентов.) Результаты исследований в промышленности и во всех государственных и даже частных научно-исследовательских учреждениях были изъяты у их хозяев и исчислялись не количеством страниц, а количеством тонн, да! да! тонн, как о том заявляла американская центральная научно исследовательская станция Райт-филд (штат Огайо), вывезенная из Германии «безусловно самое значительное собрание секретных научных документов» общим весом в 1,5 тыс. т.

Проделав анализ всех захваченных материалов и осуществив многие идеи, содержавшиеся в них, американские специалисты, по их собственному признанию, «продвинули американскую науку и технику на годы, а в некоторых случаях на целое десятилетие вперед».

Австралийский премьер-министр Чифли, выступая по радио в сентябре 1949 года, сказал, что польза, которую Австралии принесли 6 тыс. доставшихся ей при дележке патентов и перемещение в Австралию 46 немецких специалистов и ученых, совершенно не поддается выражению в денежных величинах. «Австралийские промышленники, - заявил он, - в состоянии с помощью немецких секретных материалов поставить свою страну в области техники в число самых передовых стран мира».

Если, таким образом, оценка достижений немецкой науки может быть столь противоречива, то есть, с одной стороны, опускаться до причины поражения Германии в войне, а с другой - подниматься до огромных высот, вызывая восхищение даже у самых высокоразвитых противников, значит, деятельность немецких ученых-исследователей во второй мировой войне не может быть приведена к какому-то общему простому знаменателю, а должна рассматриваться как разносторонний и всеобъемлющий комплекс научных связей. И действительно, в ту эпоху немецкая наука находилась не в каком-то определенном устойчивом состоянии, а в постоянном и до некоторой степени даже драматическом, противоречивом развитии. Поскольку от тех лет не осталось ни документов, ни самих ученых, разбросанных теперь по всему свету, составить полную картину их деятельности не представляется возможным.

Поэтому сейчас можно говорить только о некоторых наиболее характерных чертах немецкой науки того времени. Немецкий ученый той эпохи жил замкнуто, интересуясь только своей наукой и не ввязываясь ни в какую политику, не думая ни о государстве, ни об общественности. «Аполитичный немецкий профессор» стал той символической фигурой, которая часто появлялась на страницах немецкой и зарубежной печати в самом карикатур ном виде. В связи с этим напрашивается встречный вопрос: что могло заинтересовать немецкого ученого в политической жизни того времени? Германия не имела вековых национальных традиций, как, например, Франция. Германия никогда не шла по пути империалистического развития, как Англия. Она была неоднородным конгломератом мелких государств, не объединенных ни внешней, ни внутренней политикой. Когда в период между двумя мировыми войнами к власти пришел национал-социализм, «аполитичный немецкий интеллигент» предпочел укрыться в своей норе, чем выступить с каким-либо протестом. Новому режиму, однако, было не по себе, что такая большая и нужная ему профессиональная категория оставалась нейтральной по отношению к новому государству. Поэтому развернулась пропаганда, направленная против «интеллигентов» и «высокомерных академиков».

Национал-социалистская партия в то время стремилась перетянуть рабочего на свою сторону. Она старалась освободить его от марксистских традиций и сделать его националистом. Но это было нелегко, потому что классовое самосознание уже прочно укоренилось в среде рабочих. Тогда партия прибегла к более простому средству. Сословие «академиков» и «интеллигентов» стали поносить на всех перекрестках. Многочисленные партийные ораторы вплоть до самого начала войны не пропускали ни одного случая, чтобы не ругнуть ученых. Так, например, государственный деятель Роберт Лей, выступая на большом собрании рабочих военной промышленности, иллюстрировал свою мысль таким «ярким примером». «Для меня, - говорил он, - любой дворник гораздо выше всякого академика. Дворник одним взмахом метлы сметает в канаву сотни тысяч бактерий, а какой-нибудь ученый гордится тем, что за всю свою жизнь он открыл одну-единственную бактерию!».

Если мы сравним отношение к ученому и его работе у нас и в других странах, то получится следующая картина. В то время как другие государства придают развитию науки и техники огромное значение и связывают с ним судьбу и существование своих наций, Германия в этом отношении делала и делает слишком мало. Последствия этого мы ощущаем вплоть до сегодняшнего дня. Руководители нашего государства смотрели на науку.как на нечто их не касающееся. Это видно хотя бы из того, что самый незначительный из всех германских министров - Руст - был министром науки. Характерно, что этот «министр науки» за всю войну, которая больше, чем все другие, была войной техники, ни разу не был на докладе у главы государства. Да и сам Гитлер разговаривал с ведущими деятелями науки в последний раз в 1934 году, когда у него на приеме был Макс Планк, просивший разрешить своим коллегам евреям продолжать начатые ими крупные научно-исследовательские работы.

После 1933 года в результате «проверки мировоззрения» из высших учебных заведений Германии было уволено 1268 доцентов.

Сложившаяся ситуация наглядно показывает, что в «государстве фюрера», которое насильно подчиняло себе даже самые приватные области жизни, не было создано настоящей всеобъемлющей, планирующей в государственном масштабе научной организации, которая возглавила бы всю исследовательскую работу. На деле имелось лишь множество частных учреждений, работавших каждое в своей области и, в сущности, независимых друг от друга. Координации в иx работе не было почти никакой. Если такое положение еще можно допустить в мирное время, то в современной войне оно должно привести к самым роковым последствиям.

Отсутствие единства в науке

В Германии существовал большой научный сектор в системе высших учебных заведений, к которому принадлежали университеты и высшие технические учебные заведения. Сюда же входили и 30 научно-исследовательских институтов Общества кайзера Вильгельма. Эти учреждения организационно подчинялись министерству науки, воспитания и просвещения. В этой сети, охватывавшей тысячи ученых, имелся свой научно-исследовательский совет, который состоял из. представителей различных областей науки: (физики, химии, горного и литейного дела, медицины и т.д.). Каждый член совета являлся руководителем определенной группы ученых одного профиля и должен был направлять планирование и научно-исследовательскую деятельность этой группы.

Наряду с такой учебной научно-исследовательской организацией существовала совершенно независимая промышленная научно-исследовательская организация, или, как ее иначе называли, сектор, огромное значение которого стало ясно вообще только после того, как победители в 1945 году присвоили себе результаты его научно-исследовательской работы. Сюда относились лаборатории крупных промышленных предприятий, например концернов Фарбениндустри, Цейсса, Сименса, Всеобщей компании электричества, Осрама, Телефункена и др., которые, располагая крупными собственными средствами, высококвалифицированными специалистами и аппаратурой, отвечающей современным техническим требованиям, могли работать с большей производительностью, чем институтские лаборатории, не имевшие зачастую самых необходимых средств, чтобы осуществлять свои изыскания. Научно-исследовательская организация промышленности была независимой, не нуждалась в помощи какого-либо министерства, государственного научно-исследовательского совета или других ведомств, занимающихся вопросами контингентов. Эта организация работала для себя, и при этом - за закрытыми дверями. Следствием этого было то, что ученый-исследователь какого-либо высшего учебного заведения не только ничего не знал, но даже и не подозревал о тех исследованиях, открытиях и усовершенствованиях, которые производились в промышленных лабораториях. Так получалось потому, что любому концерну было выгодно из соображений конкуренции хранить изобретения и открытия своих ученых в тайне. В результате знания текли не в общий большой котел и могли принести для общего дела лишь частичный успех.

Третьей крупной научной организацией был научно-исследовательский аппарат вооруженных сил. Но и этот аппарат был не единым, а опять-таки расколотым на части, разбросанные но отдельным видам вооруженных сил. Люди, понимавшие революционную роль науки и техники в современной войне и требовавшие единого руководства научно-исследовательской работой и работой по усовершенствованию, настаивали на том, чтобы общее руководство осуществлял генеральный штаб, но перевеса они не получили. При реорганизации вооруженных сил оказалось, что каждый вид вооруженных сил - армия, авиация и морской флот (а позднее даже и отряды «СС») - создал свое собственное управление вооружений. Так возникло управление вооружений сухопутной армии со своими собственными исследовательскими учреждениями и опытными полигонами; так появился при главном командовании ВМФ самостоятельный отдел исследований, усовершенствований и патентов; так было создано техническое управление при главном командовании ВВС с хорошо оснащенными научно-исследовательскими и испытательными станциями в Геттингене, Адлерсгофе (предместье Берлина), Брауншвейге, Оберпфафенгофене (близ Мюнхена), Айнринге и других городах.

Известный приказ Гитлера о неразглашении тайн и секретов, изданный в начале войны и разрешавший отдельному человеку знать только то, что касалось его непосредственно, а также, выражаясь осторожно, «благородная» борьба за первенство между видами вооруженных сил способствовали тому, что отдельные области исследования все больше и больше изолировались друг от друга, ухудшая этим общее положение дел в науке. Ученым в лабораториях высших учебных заведений было почти невозможно получить информацию даже о самой незначительной части научных и экспериментальных работ, проводившихся в аппарате вооруженных сил. Отдельному исследователю высшего учебного заведения была вверена лишь маленькая частица всей мозаики, отнюдь не дававшая ему представления об общей картине развития. От этих исследователей можно было часто слышать такую фразу: «Мы блуждаем в потемках, мы знаем слишком мало из того, что нам нужно знать. Мы не имеем представления о том, где у нас недостатки».

Но это еще не все. Наряду с исследовательскими секторами высших учебных заведений, промышленности и вооруженных сил имелся еще целый ряд частных, самостоятельных исследовательских учреждений. Из их числа упоминания заслуживают только исключительно хорошо оснащенные институты имперской почты, которые занимались не только усовершенствованиями в области техники связи на дальних расстояниях, но и уделяли много внимания вопросам ядерной физики, проблемам инфракрасных лучей, электронной микроскопии и множеству других важных в военном отношении областей науки.

Читая эти строки, всякий задает себе вопрос: имелась ли хотя бы одна такая инстанция, которая обобщала результаты исследований всех научных секторов, руководила ими и направляла полученные данные в распоряжение тех учреждений, где они приносили наибольшую пользу как для военных, так и для гражданских целей? Нет. Такой инстанции не было. Всем научно-исследовательским работам в Германии недоставало связующего центрального органа, который суммировал бы опыт ученых и на его основе руководил бы их исканиями. Немецкая наука и техника были лишены головы, вместо нее имелись лишь отдельные связующие нервные волокна и примитивные координационные органы.

Государственный научно-исследовательский совет не имел никаких полномочий и полных сведений о том, что происходило вне сферы его влияния. И все же по собственной инициативе своих работников и по поручению различных управлений вооружений он подготовил и провел более 10 тыс. исследовательских работ, получивших у военных заслуженное признание.

Другим руководящим органом было Управление развития экономики, созданное согласно четырехлетнему плану Геринга и обслуживавшее 25 институтов, предусмотренных этим планом. Ассигнованные ему для этих целей крупные денежные средства ревностно использовались «только для целевого исследования», и бедствующие научно-исследовательские институты высших учебных заведений, выполнявшие до сих пор основную научную работу, не получили от них ни гроша. Поэтому в кругах научных сотрудников высших учебных заведений Управление развития экономики в насмешку называли «управлением развития концернов».

Во время войны приобрела чрезвычайно большой вес еще одна руководящая инстанция - министерство Шпеера. Поскольку в этот период значительно сократились возможности получения институтами сырья, кадров и лабораторного оборудования, поскольку необходимое и выполнимое уже нигде не могли встретиться и так как промышленность страны едва справлялась с заказами различных управлений вооружений, то это министерство стремилось в свою очередь получить полномочия на решение вопросов о том, какие исследовательские работы следует прекратить как ненужные, какие - продолжать дальше как имеющие «важное военное значение» и каким должно быть отдано предпочтение как имеющим «решающее значение для войны». Но науке никогда не приносит пользу такое положение, когда ее интересы решает инстанция, нацелившаяся только на усовершенствование и изготовление того, что наиболее отвечает интересам дня. Такая организация не в состоянии понять, какие возможности скрываются в планах и задачах исследовательских учреждений. Только потому, что наука оказалась лишенной руководства, учеными стали командовать чуждые науке инстанции.

Если, несмотря на это общее положение, в результате долгих научных исследований были все же созданы новые виды вооружения, новые искусственные материалы, открыты новые научные методы и новые профили науки, то за это следует благодарить, конечно, не жалкую организацию «руководителей», а только отдельных людей, которые во всех областях науки работали с полной отдачей своих сил и способностей. Сведений о том, над чем работали, что исследовали и совершенствовали ученые Германии, до сегодняшнего дня пока еще нет. Исчерпывающие данные об этом получили, применяя свой собственный «метод», только победители. Но и до этого немецкая наука в своем не лишенном драматизма развитии прошла много различных стадий и фаз.

Наука в период «молниеносных войн»

В 1939 году политические руководители Германии, руководствуясь опытом войны с Польшей, надеялись главным образом на кратковременную войну. Они, и в частности Геринг, резко выступали за то, что война должна быть выиграна тем оружием, с которым она была начата. Новые усовершенствования, которые «созрели для фронта» лишь в последующие годы, считались не представляющими интереса. Ученые, работы которых находились лишь в самой начальной стадии и которым еще требовались годы, чтобы добиться результатов, полезных для войны, не представляли для правительства никакой практической ценности. Поэтому ученые были отнесены к той категории людских резервов, из которых черпались пополнения для фронта. Само собой разумеется, что при таких обстоятельствах «гуманитарные» ученые рассматривались с самого начала как quantite negligeable (величина, которой можно пренебречь). В результате, несмотря на возражения управлений вооружений и различных других инстанций, несколько тысяч высококвалифицированных ученых из университетов, высших технических учебных заведений и различных научно-исследовательских институтов, в том числе незаменимые специалисты по исследованиям в области высоких частот, ядерной физики, химии, моторостроения и т.д., были еще в начале войны призваны в армию и использовались на низших должностях и даже в качестве рядовых солдат. Если Геббельс добился того, что артисты, музыканты, писатели, певцы, спортсмены и др. были избавлены от службы в армии, поскольку они были ему нужны для организации развлечений на родине и на фронте, то министр Руст ничего не смог сделать для своих исследователей. И когда ученые, и в особенности представители молодого поколения ученых и исследователей, покидали свои лаборатории и институты, чтобы отправиться на фронт скромными бойцами, это вызывало у всех даже гордость. Англичане (а не немцы) подсчитали, что ежегодно у всякого талантливого народа на один миллион населения появляется один исследователь. Как видите - урожай не особенно густой. И тот факт, что в век, когда один ученый-исследователь может иметь для ведения войны такое же важное значение, как и целые армии, этот дорогостоящий и порой незаменимый человеческий материал разбазаривался с такой легкостью, не мог пройти для нас бесследно.

После войны с Францией Гитлер отдал приказ прекратить все научно-исследовательские работы, которые не могут быть доведены до конца в течение одного года. Этот приказ оказался почти смертельным не только для авиации (в 1939 году уже имелся проект конструкции реактивного истребителя), от него пострадали и научно-исследовательские работы в области высоких частот, то есть как раз и той самой области, в которой противник в скором времени приобрел роковой перевес.

Сигнал бедствия в науке

Прошло некоторое время, и на немецкую армию посыпались отрезвляющие удары. Проиграна воздушная битва над Англией. Война в России в корне изменила свой первоначальный характер. В подводной войне превосходящая по качеству и количеству авиационная техника противника вызвала глубокий кризис. Не оставалось никакого сомнения, что без новых самолетов война будет проиграна, что оружие, оснащение и транспортные средства, используемые в России, должны отвечать убийственным условиям климата и местности, что техника высоких частот стала теперь важнейшим звеном всей военной техники.

Тогда руль был повернут в обратную сторону. Геббельсу пришлось издать директиву о том, чтобы впредь в прессе, по радио, в кино, в театре и в литературе больше не было выступлений против ученых и исследователей, против учителей и духовенства, а, напротив, подчеркивалось бы большое значение их деятельности. Несмотря на то, что к науке Геббельс отнюдь не имел никакого отношения, он пригласил в Гейдельберг профессоров и директоров высших учебных заведений, чтобы объявить им о том, что государство высоко ценит труд ученых.

Энергичнее всех в этом деле оказался Дениц. Он самовластно отбросил запутанную систему научного руководства, лично созвал конференцию ведущих специалистов, сообщил им со всей откровенностью о техническом кризисе подводной войны, назначил одного из ученых начальником научно-исследовательского штаба ВМФ и исключил все промежуточные инстанции тем, что подчинил этого нового «начальника штаба» лично себе. То, что главнокомандующий непосредственно подчинил себе ученого-исследователя, было в области военной техники своего рода революцией.

Для всех ученых прозвучал сигнал тревоги. Одновременно с тем, как «генерал Унру» в качестве особого уполномоченного ездил по стране, «мобилизуя» па фронт последних оставшихся в тылу мужчин, в интересах науки и техники была проведена решительная контрмера: 10 тыс. ученых, техников, специалистов и инженеров были сняты с фронта и водворены на свои места для решения неотложных задач. Чтобы предотвратить вымирание целых научных дисциплин и сохранить незаменимые кадры, было даже решено отозвать с фронта 100 ученых гуманитарных наук. Нужно было спасти то, что еще можно было спасти.

Но даже и эти меры не могли уже полностью восстановить прежней состояние немецкой науки. Пользуясь своего рода «кулачным правом» и затирая тех, кто имел менее сильные кулаки, отдельные инстанции добились для себя полномочий, получили ученых, вспомогательный персонал, аппаратуру, химикаты, дефицитные материалы и денежные средства. Но наука и техника несовместимы с импровизацией. Государство, которое хочет получить настоящие плоды науки и техники, должно действовать не только с большой прозорливостью и искусством, но и уметь терпеливо ждать этих плодов.

Ясно, что из всего того, что замышлялось, познавалось, совершенствовалось и испытывалось в лабораториях высших учебных заведений, в научно-исследовательских учреждениях вооруженных сил и в лабораториях промышленных предприятий, только часть могла поступить в производство и использоваться на фронте, ибо, когда война была уже в разгаре, плоды умственной деятельности немецких ученых еще только зрели, скрываясь в стенах их лабораторий.

Предметы исследований и достижения германской науки

Работа, проделанная немецкими учеными в области создания новых методов исследования, в области открытия нового и совершенствования технологии старого при сегодняшнем положении Германии не поддается никакому обобщению. Во время войны исследовательская работа, связанная с вооружением, проводилась исключительно как «секретная», а некоторые исследования были даже снабжены грифом «государственный секрет». Обычного для мирного времени опубликования результатов исследований в специальных научных журналах не проводилось. Исследователь, работавший над каким-либо особым заданием, но имел права говорить о нем даже со своими коллегами.

Книгу о достижениях германской науки можно было бы сегодня написать значительно легче не в самой Германии, а за ее пределами, потому что основные оригинальные документы находятся там. В одном американском отчете говорится: «Управление технической службы в Вашингтоне заявляет, что в его сейфах хранятся тысячи тонн документов. Согласно мнению экспертов, свыше 1 млн. отдельных изобретений, фактически касающихся всех наук, всех промышленных и военных секретов нацистской Германии, нуждаются в обработке и анализе. Один чиновник в Вашингтоне назвал это собрание документов «единственным в своем роде источником научной мысли, первым полным выражением изобретательского ума целого народа».

Как могло так получиться? Почему противники Германии раньше нее поняли значение исследовательской работы в нынешний век техники не только для ведения войны, но и для мирной экономики и культурного развития во всех областях жизни?

Дело заключается в том, что они смотрели на захват ценных немецких изобретений, как на военную задачу. Еще во время вторжения на Западе отряды «коммандос» сразу же начали свою охоту за научно-исследовательскими материалами и за самими исследователями. Подготовленная союзниками операция «Пейпер-Клипс» осуществлялась в основном американцами. Однако английские, французские и советские войска принимали не меньшее участие в этом единственном в истории войн «трофейном походе».

Распространявшееся в конце войны иностранной пропагандой под влиянием общего военного психоза утверждение о том, что германская наука добилась лишь незначительных результатов и что в стране, где нет свободы, наука вообще не способна на многое, было вскоре опровергнуто многочисленными выступлениями самих иностранных ученых. В отчете Общества немецких ученых, озаглавленном «Исследование означает труд и хлеб» (сентябрь 1950 года), излагается целый ряд таких утверждений. По недостатку места я приведу лишь некоторые из них.

Так, например, мистер Лестер Уокер пишет в журнале «Харперс Мэгезин» (октябрь 1946 года): «Материалы о секретных военных изобретениях, которых еще недавно было всего лишь десятки, теперь представляют собой скопление актов общим количеством до 750 тыс...» Для того чтобы новым немецким понятиям подыскать соответствующие английские термины, потребовалось бы составить новый немецко-английский словарь специальных слов, куда вошло бы около 40 тыс. новых технических и научных терминов.

В американском официальном отчете приводится ряд отдельных изобретений и результатов исследований немецких ученых в области прикладной физики, в области исследования инфракрасных лучей, по изобретению новых смазочных средств, синтетической слюды, методов холодной прокатки стали и т.д., получивших всеобщее признание у американских ученых. Так, в отчете говорится: «Мы узнали из этих бесценных секретов способы изготовления самого лучшего в мире конденсатора. Конденсаторы миллионами применяются и в радиотехнике, и в производстве высокочастотной аппаратуры... но этот конденсатор выдерживает почти в два раза большее напряжение, чем наши американские конденсаторы. Это настоящее чудо для наших специалистов-радиотехников».

Относительно изобретений в текстильной промышленности в этом отчете говорится, что «в этом собрании секретов содержится так много нового, что большинству американских специалистов-текстильщиков стало не по себе...»

О трофеях из лабораторий концерна И. Г. Фарбениндустри говорится: «... однако самые ценные секреты были получены нами от лабораторий и заводов большого немецкого химического концерна И. Г. Фарбениндустри. Нигде и никогда не имелось такого ценного клада производственных секретов. Эти секреты относятся к производству жидкого и твердого топлива, к металлургической промышленности, к производству синтетического каучука, текстиля, химикалиев, искусственных тканей, медикаментов и красок. Один американский специалист в области производства красителей заявил, что немецкие патенты содержат способы и рецепты для получения 50 тыс. видов красящих веществ, и большинство из них - лучше наших. Нам самим, вероятно, никогда не удалось бы изготовить некоторые из них. Американская красочная промышленность шагнула вперед по меньшей мере на десять лет».

Можно привести и целый ряд других заявлений, содержащихся в различных отчетах: «Не менее внушительной была добыча специальных поисковых групп союзников и в области производства продуктов питания, в области медицины и военного искусства»... «совершенно необозримы «трофеи» в области последних достижений авиации и производства авиационных бомб». «Величайшее значение для будущего, - говорится в другом месте, - имеют германские секреты в области производства ракетных и реактивных снарядов... как стало известно, немцы в конце войны имели в различных стадиях производства и разработки 138 типов управляемых на расстоянии снарядов... применялись все известные до сих пор системы управления на расстоянии и прицеливания: радио, короткие волны, проводная связь, направленные электромагнитные волны, звук, инфракрасные лучи, пучки света, магнитное управление и т.д. Немцы разработали все виды ракетного двигателя, позволявшего их ракетам и реактивным снарядам достигать сверхзвуковых скоростей».

После капитуляции Японии президент Трумэн приказал опубликовать конфискованные (364 тыс.) патенты и другие захваченные документы. 27 июля 1946 года 27 бывших союзных государств подписали в Лондоне соглашение, согласно которому все немецкие патенты, находящиеся вне пределов Германии и зарегистрированные до 1 августа 1946 года, были экспроприированы. Библиотека конгресса в Вашингтоне стала издавать библиографический еженедельник, в котором были указаны рассекреченные военные и научные документы, их краткое содержание, количество и стоимость сделанных с них копий и т. д. Эти еженедельные бюллетени рассылались 125 библиотекам Соединенных Штатов, «чтобы сделать их более доступными для публики».

Американские дельцы сами признают огромное значение немецких открытий и изобретений для практического использования в промышленности и технике. «Общественность буквально пожирает опубликованные военные секреты», - говорится в одном из вышеупомянутых отчетов. «За один только месяц мы получили 20 тыс. запросов на технические публикации, а сейчас ежедневно заказывается около 1 тыс. экземпляров этих бюллетеней... уполномоченные фирм простаивают целые дни в коридорах Управления технической службы, чтобы первыми получить новую публикацию. Большая часть информации настолько ценна, что промышленники охотно дали бы многие тысячи за то, чтобы получить новые сведения одним днем раньше своих конкурентов. Но сотрудники Управления технической службы тщательно следят за тем, чтобы никто не получил отчет до его официального опубликования. Однажды руководитель одного исследовательского учреждения просидел около 3 часов в одном из бюро Управления технической службы, делая записи и зарисовки с некоторых готовящихся к публикации документов. Уходя, он сказал: «Премного благодарен, мои заметки дадут моей фирме по меньшей мере полмиллиона долларов прибыли».

Далее американский отчет говорит о представителях Советского Союза. Это место выдержано еще в наивных выражениях 1946 года, но сейчас, в обстановке 1953 года, оно заставляет читателя отнестись к нему внимательней. С наивной гордостью американцы сообщают: «Одним из ненасытнейших наших клиентов является Внешторг (Министерство внешней торговли Советского Союза). Какой-то их руководитель пришел однажды в бюро издательства с библиографией в руках и сказал: «Я хочу иметь копии со всего, что у вас есть». Русские прислали мам в мае заказ на 2 тыс. публикаций на общую сумму 5594 доллара 40 центов. Вообще они покупали любое выходившее издание».

Русские позаботились о том, чтобы заполучить себе плоды труда немецких деятелей науки и техники также и другим путем. Так, в конце войны они вывезли из Германии несколько сотен первоклассных специалистов, в том числе: профессора доктора Петера Тиссена - директора института физической химии и электрохимии (Институт кайзера Вильгельма), являвшегося одновременно и руководителем сектора химии в государственном научно-исследовательском сонете; барона Манфреда фон Арденне - крупнейшего немецкого ученого в области техники высоких частот, телевидения, электронной микроскопии и разделения изотопов; профессора Макса Фолльмера - ординарного профессора физической химии в высшем техническом училище (Берлин - Шарлоттенбург) и ведущего специалиста в области полупроводников и производства аккумуляторов, имевшего громадный авторитет в вопросах военной техники; профессора Густава Герца - занимавшего до 1938 года пост директора института Генриха Герца по исследованию колебательных явлений (Берлин), а впоследствии - руководителя исследовательской лаборатории № 2 «Сименс-Верке», знавшего все многочисленные секреты этого концерна; доктора Николауса Риля - директора научного отдела компании «Ауэр», известного специалиста по производству люминесцентных красок, имеющих большое значение для военной и гражданской промышленности.

Русским удалось вывезти к себе и доктора Л. Бевилогуа - ученика знаменитого на весь мир профессора Дебие, эмигрировавшего из Германии на Запад и награжденного Нобелевской премией. Дебие был директором института холода в Далеме.

Это всего лишь несколько имен. Но какую огромную пользу могут они принести Советскому Союзу! Профессор доктор Тиссен, например, занимал в научно-исследовательском мире Германии первостепенное положение. Тиссен был учеником виднейшего немецкого специалиста по коллоидной химии профессора Жигмонди из Геттингена. Институт, возглавлявшийся Тиссеном, был крупнейшим из тридцати институтов Общества кайзера Вильгельма и имел штат, насчитывавший около 100 сотрудников. Он имел самое лучшее оборудование, а его денежные средства равнялись сумме бюджетов по крайней мере десятка других, конечно, тоже не менее важных институтов Общества кайзера Вильгельма. Из имевшихся тогда в Германии 25 электронных микроскопов три находились в институте Тиссена. Тиссен был также руководителем сектора химии в государственном научно-исследовательском совете. Это означало, что ему были известны все планы исследовательской работы в области химии, ход их выполнения и результаты. Тиссен был человеком, который мог обрабатывать эти результаты не только в административном порядке, но и лично просматривать их, давая им критическую оценку. Люди, тесно сотрудничавшие с Тиссеном, говорят, что у него феноменальная память. Наконец, Тиссен был одной из главных фигур так называемого «химического штаба», который состоял из трех членов: председателя наблюдательного совета концерна И. Г. Фарбениндустри профессора Крауха, руководителя германского общества химиков государе тонного советника Шибера и самого Тиссена. Таким образом, Тиссен был осведомлен о состоянии дел во всей германской химии. Задачей химического штаба было обобщать результаты опытов, проведенных в лабораториях, и затем передавать накопленный опыт для дальнейшего использования его в производстве. Отсюда следует, что Тиссен знал не только направление исследовательских работ в области химии, но и был посвящен в тайны химической промышленности Германии, в ее методы, планирование и находился в контакте с самыми крупными химическими промышленниками. Он знал важнейшие секреты, которые используются теперь Советским Союзом.

Что касается немецких ученых, находящихся сейчас в Америке, то Пентагон в декабре 1947 года сообщил, что туда вывезено 523 немецких ученых и что эта цифра вскоре увеличится до 1 тыс. человек. Более точных сведений пока не имеется.

Наиболее сдержанными в своих сообщениях о взятых в плен ученых и специалистах были до сих нор англичане. Но профессора, возвратившиеся из лагерей предварительного заключения, сообщают, что там находится много «известностей и даже знаменитостей из всех областей науки». В общей сложности странами-победительницами вывезено более 2 тыс. немецких ученых и специалистов.

Вывоз из Германии немецких ученых является для нашего народа наиболее тяжелым последствием минувшей войны. Исследователей можно сравнить с мозгом нации. В конце войны наша нация подверглась тяжелой операции: этот мозг был вырезан у нес вместе со всем, чего достигла нация, то есть вместе со всеми результатами исследований, патентами и т. д. Все это досталось победителям и влилось в их научный к хозяйственный организм. Это, конечно, более современной форма экономического воздействия на побежденного, чем военные контрибуции и денежные репарации старого времени. Такая мера ведет к резкому сокращению духовного потенциала побежденного народа. Она представляет собой искусственное оплодотворение науки, техники и хозяйства победителя. Американский журнал «Лайф» в номере от 2 сентября 1946 года вполне трезво подтверждает это, заявляя, что истинная цель репараций заключалась не в демонтаже промышленных предприятий Германии, а в иссечении мозга немецкой нации», в захвате всего того, что было накоплено ею в области науки и техники.

Судьба исследователей в конце войны

Немецкая наука, получившая сильное развитие в первой половине нашего столетия, была в конце последней войны сведена почти на нет следующими тремя обстоятельствами: во-первых, потерей всех результатов научно-исследовательской работы, включая патенты, и распылением их по всему миру; во-вторых, перемещением ведущих немецких специалистов в страны бывших противников; в-третьих, дискриминацией оставшихся в Германии исследователей.

В результате политической чистки, проведенной еще при Гитлере, 1628 доцентов были изгнаны с кафедр и из исследовательских институтов. По данным, опубликованным в начале 1950 года в еженедельнике «Крист унд Вельт», это составляло 9,5% всего преподавательского состава высших учебных заведений Германии. Это значит, что каждый десятый ученый был исключен из научной жизни страны. Жертвами следующей политической чистки, в 1945 году, пали еще 4289 доцентов, что составило уже 32,1% всех ученых. Таким образом, в 1945 году каждый третий немецкий преподаватель высших учебных заведений потерял и свою кафедру, и возможность продолжать научно-исследовательскую работу.

О том, что думали американцы о «политической опасности» этих ученых, становится ясно из ряда официальных заявлений. Так, например, руководитель операции «Пейпер-Клипс» дал следующую директиву отрядам «коммандос», занимавшимся «ловлей» немецких ученых. «Если вам попадутся просто антифашисты, не представляющие ценности для науки, - не брать. Если же они могут иметь для нас определенный научный интерес, то их политическое прошлое не играет никакой роли». И когда один американский сенатор выразил свои сомнения по поводу такого «импорта немецких ученых, основывая их на том, что большинство из них являлось членами нацистской партии, представитель американского военного министерства ответил на это так: «Ученые обычно интересуются только своими исследованиями и лишь изредка - политикой».

Ущерб, понесенный немецкой наукой, отнюдь не ограничивается теми учеными, которые остались без места во время политических чисток периода власти Гитлера. Уже после войны из университетов восточной зоны Германии в западную зону перекочевало еще 1028 доцентов в качестве безработных беженцев. Это составило 7,7% всего преподавательского состава немецких высших учебных заведений. Если сложить все это вместе, то получится, что с 1933 по 1946 год, по данным Общества основателей немецкой науки, потеряли свою работу «по политическим причинам» 49,3% всех преподавателей высших учебных заведений. Это составляет приблизительно половину общего количества немецких ученых. Ни одно другое профессиональное сословие Германии не было так обескровлено. Как такая ампутация отразится на немецкой интеллигенции, может показать только будущее.

Взгляд на будущее

Было бы неправильно сказать, что судьба, постигшая германскую науку во второй мировой войне, сегодня уже не беспокоит руководящие круги нашего государства. В самых различных слоях населения, вплоть до членов парламента при обсуждении ими государственных бюджетов, можно слышать один и тот же аргумент: «Такой обедневший народ, как немецкий, не может снова поднять свою науку на высокий уровень. Он должен сначала выйти из своего бедственного положения».

На это у нас, немцев, имеется только один ответ. Как раз потому, что германской науке причинен такой огромный ущерб, нас больше, чем всех других, касается та простая истина, что естественные науки сегодня создают предпосылки для техники завтрашнего дня, и сегодняшний рабочий не будет в состоянии прокормить своих сыновей, если дальнейшее развитие науки не создаст предпосылки для их самостоятельной работы завтра. Если наше поколение не исправит теперь чудовищные последствия войны, разорившей нашу науку, это принесет большой вред экономике и социальной структуре будущих поколений. Мы, немцы, должны сделать для нашей науки значительно больше других.

Однако цифры убедительно говорят о том, что делается еще не все. Так, например, Америка отпускает на финансирование своих научно-исследовательских институтов такие суммы, которые при расчете на душу населения составляют 71 немецкую марку; Англия - 25,2 марки, а Федеральная Республика - только 7,75 марки.

В связи с этим возникает другой вопрос. Было бы пустой иллюзией верить в то, что любой «ущерб» в науке может быть возмещен деньгами. Науку нельзя купить на деньги, как нельзя ее и заимствовать или «организовать». Деньги могут быть лишь вспомогательным средством, правда, необходимым, но не решающим. Никакие деньги не помогут там, где нет таланта к научно-исследовательской работе. А подлинный талант к науке и к исследованию встречается в любом народе крайне редко: это - дар природы. Но то, как обращались с этим природным даром на протяжении нескольких последних лет и как буквально разбазаривали его в зависимости от того, насколько люди, наделенные этим даром, отвечали тем или иным политическим требованиям времени, является отнюдь не актом мудрости, а актом исключительной политической близорукости и слепоты. Великий процесс излечения, который стал необходимым для нашей науки, снова начинает вызывать к себе глубокое благоговение и признание народа. Только тогда, когда будут созданы внешние предпосылки, то есть достаточное финансовое обеспечение, и внутренние предпосылки, то есть полное уважение к ученым и благоговение перед этим профессиональным сословием, мы сможем надеяться, что наше молодое поколение выделит из своей среды людей, одаренность и таланты которых позволят им обратиться к трудной профессии ученого. Ведь неудачи прошлого действуют отпугивающе весьма непродолжительное время.

Настоящая статья составлена по материалам бесед с многочисленными учеными и экспертами самых различных областей науки.