Методическое пособие по организации работы по охране труда в строительных организациях локальные нормативные документы по охране труда в строительстве. Основные требования по предупреждению электротравматизма Предупреждение электротравм

Как показывает статистика, несчастных случаев от поражения электрическим током становится меньше. Однако это не должно вести к самоуспокоению, наоборот, необходимо усилить борьбу за полное уничтожение травматизма от поражения электрическим током.

Не стоит исключать удары током, если вы не работаете с напряжением. Ударом может подвергнуться любой человек.

Как происходит поражение человеческого организма электрическим током?

Тело человека следует рассматривать как проводящую массу, окруженную диэлектриком - наружным кожным покровом.

Сопротивление тела человека электрическому току зависит главным образом от состояния наружного кожного покрова.

Сопротивление - величина переменная, различная не только у разных людей, но даже у одного и того же человека, в зависимости от ряда факторов (увлажнения кожи, потовых выделений, наличия металлической пыли и пр.).

Сопротивление тела человека изменяется в широких пределах (от нескольких сотен тысяч до одной тысячи омов), а иногда (в особо неблагоприятных условиях) и до 400-500 Ом. Расчетным сопротивлением принято считать 1000 Ом.

Смертельной величиной является сила тока от 0,1 А и выше, опасной величиной - ток от 0,05 А и выше. Наиболее опасным считается переменный ток частотой от 40 до 60 Гц.

Наиболее сильное воздействие ток оказывает на центральную нервную систему, нарушая электрические процессы, свойственные живой материи, с которыми связана ее жизнедеятельность. При поражении электрическим током происходят также такие явления, как механический разрыв тканей тела, ожоги, химические явления (электролиз крови) и др.

Поражения электрическим током разделяют на электрические удары и электротравмы.

Электрический удар наиболее опасен. Он выражается в том, что при прохождении электрического тока через тело человека поражается весь организм.

Электротравмы - это случаи, при которых получаются электрические знаки и металлизация кожи. К электротравмам также относят повреждения при падении с высоты во время обслуживания электрических установок.

Основными причинами поражения человека при электрическом ударе являются работа под напряжением, неисправное состояние электроустановок, случайное прикосновение к находящимся под напряжением токоведущим частям непосредственно или металлическими и другими предметами.

При непосредственном случайном соприкосновении с токоведущими частями создается наибольшая опасность поражения электрическим током. Особенно опасно случайное прикосновение человека одновременно к двум различным фазам установки, находящейся под напряжением. При таком прикосновении ток достигает максимальной величины, обусловливаемой лишь сопротивлением тела человека. Опасность увеличивается еще и потому, что в большинстве случаев человек прикасается к обеим фазам двумя руками, и путь тока лежит через внутренние органы человека (сердце, дыхательные органы и т. д.). Кроме того, на человека в этом случае воздействует полное рабочее напряжение установки, и изоляция ее не оказывает своего защитного действия.

Все случаи электротравматизма подлежат регистрации.
Данные статистики электротравматизма подтверждают возможность тяжелого поражения электрическим током при двухфазном включении даже при напряжении 65 в.

Электротравмы обычно сопровождаются прохождением электрического тока через землю.

Персонал, обслуживающий электрическую установку или соприкасающийся с ней, также соединен с землей через сопротивления большей или меньшей величины, зависящей от состояния тела, материала пола, свойств обуви и т. д. Поэтому для человека может представить опасность не только одновременное включение на две фазы электрической установки, но и прикосновение к одной фазе, так как при этом через землю проходит электрическая цепь, в которую включается человек.
Прикосновение к одной фазе возможно во многих случаях при работе под напряжением (например, при замене перегоревших ламп, прикосновении к проводу с поврежденной изоляцией и особенно при работе с переносными электроприборами и электроинструментом).

Следует также иметь в виду, что в сетях переменного тока при соприкосновении человека с какой-либо фазой через его тело кроме тока утечки (активного тока) проходит также ток, обусловленный емкостью сети по отношению к земле (емкостный ток).

При изолированной нейтрали установки тело человека включается на последовательно с сопротивлением сети. Если сопротивление сети становится близким к нулю, то тело человека оказывается непосредственно включенным на полное линейное напряжение.

Однофазное включение может возникнуть, когда работы (например, по измерениям) выполняют без защитных средств, при пользовании приборами с неудовлетворительной изоляцией токоведущих частей, а также при переходе напряжения на металлические конструктивные части оборудования.
При неповрежденных диэлектрических галошах в случае применения изоляционного основания опасность поражения может быть сведена к минимуму.

Электрические ожоги возникают при самых разнообразных коротких замыканиях, сопровождающихся появлением электрической дуги.
Короткие замыкания в установках напряжением до 1000 В происходят при соединении фаз каким-либо металлическим предметом (инструментом), при неправильном включении рубильников асинхронных электродвигателей с отключенным реостатом ротора, при установке предохранителей, когда короткое замыкание в сети не устранено, при отключениях и т. п.

В установках напряжением выше 1000 В наибольшую опасность в отношении ожогов представляет отключение разъединителей под нагрузкой.

Различают три степени ожогов: первая - покраснение кожи, вторая - образование пузырей, третья - обугливание и омертвление тканей.

Основные причины несчастных случаев от воздействия электрического тока следующие:

Случайное прикосновение или приближение на опасное расстояние к токоведущим частям, находящимся под напряжением;

Появление напряжения на металлических частях электрооборудования (корпусах, кожухах и др.) в результате повреждения изоляции и других причин;

Появление напряжения на отключенных токоведущих частях, на которых работают люди, вследствие ошибочного включения установки;

Возникновение шагового напряжения на поверхности земли в результате замыкания провода на землю.

Меры профилактики электротравматизма можно разделить на 2 группы: организационные и технические.

К организационным мерам относятся: нормативные документы, разделение сетей и помещений по степени опасности поражения электрическим током, разделение персонала на квалификационные группы, обучение, инструктаж, соответствующая организация работ, медосмотры и т.п.

Основные нормативные документы по электробезопасности – «Правила устройства электроустановок» (ПУЭ), «Правила технической эксплуатации электроустановок потребителей» (ПТЭ), «Правила техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).

Согласно ПУЭ электрические сети делятся на: сети до 1000 В и свыше 1000 В.

В соответствии с ПУЭ все помещения делят на 3 класса:

Без повышенной опасности (нет ни одного признака повышенной опасности), например, нежаркие, сухие, непыльные, с нетокопроводящим полом, не загроможденные оборудованием;

С повышенной опасностью (есть один признак повышенной опасности);

Особо опасные помещения (имеют 2 и более признаков повышенной опасности).

Признаками повышенной опасности являются: наличие токопроводящих полов, наличие токопроводящей пыли, сырые помещения (влажность более 70 %), жаркие помещения (температура более 35 о С), возможность одновременного прикосновения человека к частям электроустановки и элементам, имеющим контакт с землей.

Электротехнический персонал подразделяется на 5 квалификационных групп по технике безопасности.

Рассмотрим технические меры профилактики электротравматизма. Согласно ПУЭ безопасность электроустановок достигается следующими методами:

Применением надлежащей изоляции,

Соблюдением соответствующих расстояний,

Закрытием ограждениями,

Блокировкой отключения,

Заземлением (занулением) корпусов,

Выравниванием потенциала,

Применением разделительных трансформаторов,

Применением малых напряжений,

Использованием защитных изолирующих средств (сопротивление изоляции должно быть не менее 0,5 МОм).

Рассмотрим основные меры более подробно.


Надлежащая изоляция обеспечивается периодической проверкой сопротивления изоляции в установленные сроки, например, для помещений без повышенной опасности - не реже 1 раза в 2 года, для опасных помещений - 1 раз в полгода.

В некоторых случаях применяется двойная изоляция, состоящая из рабочей и дополнительной изоляции. Рабочая - для изоляции токоведущих частей, дополнительная - для защиты в случае повреждения рабочей изоляции. Широко применяют при создании ручных электрических машин. Пример наиболее простого осуществления - изготовление корпуса из изолирующего материала (электробытовые приборы).

Под защитным заземлением понимают преднамеренное соединение нормально нетоковедущих частей электрооборудования с землей или ее эквивалентом. Принцип действия основан на снижении до безопасной величины напряжения прикосновения, возникающего при повреждении изоляции токоведущих частей электрооборудования. В случае пробоя фазы на корпус ток, проходящий через человека, зависит от сопротивления заземлителя. Это сопротивление выбирают так, чтобы ток, протекающий через человека, был меньше предельно допустимого при аварийных ситуациях. В общем случае сопротивление заземлителя не должно превышать 4 Ом. Защитное заземление применяют в трехфазных трехпроводных сетях с изолированной нейтралью при напряжениях до 1000 В и с любым режимом нейтрали при напряжении свыше 1000 В.

Под защитным занулением принято понимать искусственное соединение нормально нетоковедущих частей электрооборудования с заземленной нейтралью сети. Проводник, с помощью которого выполнено это соединение, называется нулевым защитным проводником. В отличие от рабочего нулевого провода, по которому протекают токи уравновешивания фаз, в цепи защитного нулевого провода ток протекает только при появлении токов утечки на подключенные к нему части оборудования. В результате при пробое фазы на корпус возникает режим короткого замыкания и поврежденный участок сети отключается с помощью плавкого предохранителя или автомата защиты. Однако до момента аварийного отключения на корпусе оборудования может существовать высокое напряжение, опасное для жизни. Поэтому защита в таких сетях должна срабатывать быстро. Зануление применяют в трехфазных четырехпроводных сетях с заземленной нейтралью при напряжениях сети до 1000 В. Недостатком является то, что потенциал на корпусе не снижается до безопасной величины, кроме того, при пробое на один из корпусов опасное напряжение переходит на все корпуса оборудования, включенные в эту сеть.

При занулении оборудования помимо первичного заземлителя нейтрали применяют вторичное заземление защитного нулевого провода с целью обеспечения безопасности при случайном обрыве нейтрали. Цель вторичного (повторного) заземления нейтрали - исключить возможность появления фазного напряжения на корпусах электрооборудования при замыкании фазы на землю.

В помещениях с повышенной опасностью и особо опасных подлежит заземлению (занулению) все оборудование при напряжении питания свыше 42 В переменного тока и 110 В постоянного. В помещениях без повышенной опасности - все оборудование при напряжении 380 В и выше переменного и 440 В и выше постоянного тока. Во взрывоопасных помещениях заземляется (зануляется) все оборудование независимо от напряжения питания.

Во многих случаях быстродействие обычной защиты оказывается недостаточным (например, во взрывоопасных помещениях) или порог срабатывания защиты слишком высок. В таких случаях применяется защитное отключение - быстродействующая защита, срабатывающая при появлении опасности поражения электрическим током. В зависимости от вида исполнения защита может срабатывать при появлении на корпусе электрооборудования напряжения, превышающего порог срабатывания реле, или отключать поврежденный участок сети, если ток утечки изоляции превышает допустимую величину.

При заземлении электроустановок свыше 100 кВ допускается значение потенциала заземлителя до 10 кВ. При этом шаговое напряжение и напряжение прикосновения могут достигать опасных для человека величин. Поэтому при заземлении установок свыше 1000 В и токами замыкания более 500 А разрешается применять только контурные заземляющие устройства, т.е. такие, которые располагаются на одной площадке с заземляемым оборудованием. Для снижения шагового напряжения и напряжения прикосновения осуществляют выравнивание потенциала по поверхности площадки за счет более частого расположения заземлителей и соединительных полос.

Разделительные трансформаторы используются в протяженных сетях с изолированной нейтралью для восстановления ее защитного свойства.

При работе с ручным переносным электроинструментом, переносными системами местного освещения человек имеет длительный контакт с корпусами этого оборудования. В результате повышается опасность поражения электрическим током в случае повреждения изоляции и появления напряжения на корпусе. Поэтому необходимо питать эти установки напряжением не выше 42 В . В особо опасных помещениях при особо неблагоприятных условиях требуется еще более низкое напряжение – 12 В.

К техническим мерам относится применение защитных средств : различных ограждений постоянного и временного характера и изолирующих средств. Изолирующие защитные средства делятся на основные и дополнительные. Основные средства защищают человека от рабочего напряжения. В сетях до 1000 В к ним относятся диэлектрические перчатки, инструмент с изолированными рукоятками, токоизмерительные клещи, измерители напряжения, изолирующие штанги и т.п. Дополнительные изолирующие средства защищают от шаговых напряжений и напряжения прикосновения. К ним относятся коврики, подставки, маты, калоши, боты. При наличии опасности используют предупредительные плакаты.

Технические мероприятия по предупреждению электротравматизма

К техническим мероприятиям по предупреждению электротравматизма относят:

Выбор типа сети электроснабжения;

Соответствующую изоляцию тоководящих частей электроустановок;

Ограждение неизолированных элементов электроустановок и его блокировку;

Применения малого напряжения;

Защитное заземление электрооборудования;

Зануление электрооборудования;

Защитное отключение электрооборудования при его неисправности;

Индивидуальные электротехнические защитные средства.

5.1. Выбор типа сети электроснабжения

Для снабжения электроэнергией промышленных, общественных и жилых зданий в основном применяют трехфазные сети переменного тока частотой 50 Гц. Наиболее широкое применение в промышленности нашли сети с изолированной нейтралью источника тока (рис. 5.1.) и с глухозаземленной нейтралью источника тока (рис. 5.2.)

Рис. 5.1. Трехфазная сеть с изолированной нейтралью

Рис. 5.2. Трехфазная сеть с глухозаземленной нейтралью и нулевым защитным проводником (Н.З.П)

Анализ этих сетей показывает, что при двухполюсном включении человека в сеть (рис. 5.1., а и рис. 5.2., а) независимо от режима нейтрали источника тока и сопротивления изоляции человек оказывается под линейным напряжением (Uл = ∙ V ф) и через него будет протекать ток величиной Ih (II) =Vл/Rh = 380 / 1000 = 0,38 А = 380 мА, что, значительно выше (при ≥ 1с) тока фибрилляционного допустимого (см. табл. 2). Следовательно при двухполюсном включении человека в сеть обе сети одинаково опасны.

При однополюсном включении человека в сеть небольшой протяженностью (при С = 0) (рис. 5.1, б) величины тока, протекающего через человека, значительно уменьшается вследствие того, что в электрическую цепь последовательно включается сопротивление изоляции (rи) других фаз относительно земли, Ih = Uф / (Rh +) = 220 | (1000 +) = 0,00131 А = 1,31 мА. Такая величина тока значительно ниже тока неотпускающего допустимого (I н.д.= 6 мА) и находится на уровне тока ощутимого. В сетях с глухозаземленной нейтралью при однополюсном включении в сеть (рис. 5.2, а) величина тока, протекающего через человека, будет Ih (I) = Uф / Rh = 220 / 1000 = 0,22 А = 220 мА, что выше допустимого значения тока фибрилляционного. Следовательно сети с изолированной нейтралью небольшой протяженностью, когда их емкостью можно принебречь (С = 0), при однополюсном включении в сеть человека менее опасны, чем сети с глухозаземленной нейтралью источника тока.

Величина тока, проходящего через человека, при однополюсном включении в сеть с изолированной нейтралью и значительной емкостью (рис. 5.1, в), т.е. С ≠ 0, равна Ih = Uф / (Rh + (z/3))= 220 / (1000 +(10000/3)) = 0,0507 А = 50,7 мА. Такая величина тока превышает длительно (> 1с) допустимый ток фибрилляционный (см. табл. 2).

где Z – полное сопротивление изоляции сети относительно земли составляет обычно коло 10 кОм.

При аварийном режиме (когда одна из фаз сети замкнута на землю или оборудование) в сетях с изолированной нейтралью (рис. 5.1, г) при однополюсном включении в сеть человек оказывается практически под линейным напряжением и через него протекает ток, такой же величины, что и при двухполюсном включении в такую же сеть. Величина этого тока равна Ih = ∙ Vф / (Rh + rз) = ∙ 220 / (1000 + (20…30)) ≈ 0,3699 А = 369,9 мА, что значительно превышает длительно ( ≥ 1с) допустимый ток фибрилляционный (табл. 2).

где rз – сопротивление растеканию тока в месте замыкания фазы, обычно равно 20…30 Ом.

В сети с глухозаземленной нейтралью источника тока (рис. 5.2, б) при аварийном режиме и однополюсном включении человека в сеть он окажется под напряжением прикосновения (Uф < Uпр < Uл) больше фазного, но меньше линейного напряжения. При Uф = 220 В достигнет величины Uпр = 240 – 260 В, а ток, проходящий через человека, величины Ih = 260 / (1000 + )) = 0,2591 А = 259,1 мА, что также значительно больше длительно ( ≥ 1с) допустимого тока фибрилляционного (табл. 2). Где R 0 – сопротивление основного заземляющего устройства нейтрали источника тока, R 0 = 4 0м.

Анализ сетей по опасности поражения человека током показал, что менее опасны сети с изолированной нейтралью небольшой протяженностью при нормальном режиме. Во всех других случаях сети с изолированной и глухозаземленой нейтралью источники тока практически одинаково опасны как при однополюсном, так и двухполюсном включении в электрическую сеть в нормальном и аварийном режимах работы.

Сети с изолированной нейтралью применяют в тех случаях, когда можно поддерживать сопротивление изоляции на высоком уровне и когда емкость сети относительно земли незначительна (сети небольшой протяженности – до 1 – 1,5 км). Их применяют в опасных и особо опасных производствах по поражению электрическим током (шахты, рудники, взрывоопасные помещения), а также когда при аварийном режиме нельзя отключить потребителя(I категория).

Во всех других случаях предпочтение отдают сетям с глухозаземленной нейтралью, в которых можно применять оборудование на два напряжения (на 220 и 380 В) без дополнительных понижающих устройств, а защита осуществляется путем его селективного автоматического отключения при авариях или неисправностях.

Сети при напряжении выше 1000 В представляют повышенную опасность независимо от режима нейтрали, режима работы или вида включения в электрическую сеть (однополюсное или двухполюсное включение). Во всех случаях величина тока, протекающего через человека, будет значительно (в несколько раз, а иногда и на несколько порядков) превышает допустимые значения.

5.2.Сопротивление изоляции токоведущих частей

Состояние изоляции в значительной мере определяет степень безопасности эксплуатации электроустановок. Сопротивление изоляции в сетях с изолированной нейтралью определяет ток через человека (см. рис 5.1). В сетях с заземленной нейтралью ток через человека не зависит от сопротивления изоляции (рис. 5.2), но при плохом ее состоянии часто происходит ее повреждение, что приводит к коротким замыканиям на землю (корпус), а это представляет опасность поражения людей током, прикоснувшимся к корпусу оборудования или появлению шагового напряжения на территории электроустановки.

Сопротивление изоляции в установках напряжением до 1000 В регламентировано ПУЭ, ПТЭ и ПТБ электроустановок потребителей и должно быть не менее 0,5 МОм в условиях с нормальными параметрами окружающей среды. При повышенной влажности окружающей среды или при агрессивных газах и парах (пары кислот и щелочей), сопротивление изоляции проводов и кабелей должны быть не менее 1,0 МОм. Для электрических печей – ванн с расплавленными средами сопротивление изоляции этих объектов в холодном состоянии должно быть не ниже 0,5 МОм. Необходимое сопротивление изоляции электродвигателей, трансформаторов и другого электрооборудования рассчитывается по специальным формулам, приведенным в ПТЭ и ПТБ электроустановок потребителей.

Регламентируется сопротивление изоляции только отдельных участков сети, находящихся между двумя разъединителями (рис. 5.3.) или двумя предохранителями. Нормируется сопротивление между фазами, а также между каждой фазой и землей. В установках напряжением до 1000 В сопротивление изоляции измеряют не реже одного раза в год при помощи мегаомметра (МОм) на напряжение 1000 В. (см. рис. 5.3).

В электроустановках напряжением выше 1000 В сопротивление изоляции испытывают повышенным выпрямленным напряжением величиной Uис = (2 - 6) ∙ Uн в течение 5…15 мин в зависимости от номинального напряжения (Uн) испытуемой сети. Если за время испытания не произошел пробой изоляции, то считается она выдержала испытание. После испытания повышенным напряжением обязательно нужно проверить целостность изоляции мегаомметром, т.к. в момент отключение от источника испытания мог произойти пробой и приборы его не зарегистрировали.

На подстанциях напряжением выше 1000 В часто проводят постоянный контроль за сопротивлением изоляции при помощи специальных устройств и приборов.

Рис. 5.3. Схема измерения сопротивления изоляции мегаомметром

5.3. Ограждение и блокировка электрооборудования

Многие элементы электроустановок (контакты включателей, ножи рубильников, металлические нагреватели электропечей, металлические электроды печей-ванн с расплавленными средами, электроды ионного нагрева и электролитического травления, индукторы установок ТВЧ, троллеи для мостовых кранов и кранбалок и т.п.) по условиям работы не изолируются. Кроме того, часть элементов электроустановок находятся под высоким напряжением (повысительный трансформатор, колебательный контур анодного напряжения, высокочастотный закалочный трансформатор установок ТВЧ и др.), к которым приближаться на расстояние менее допустимого опасно.

Чтобы исключить возможность прикосновения к неизолированным элементам или опасного приближения к изолированным токоведущим частям высокого напряжения их ограждают или располагают на недоступной высоте либо в недоступном месте. При повышенной опасности ограждения блокируют с включателями электроустановок.

В установках напряжением до 1000 В ограждения могут быть как сплошными, так и сетчатыми. Размер ячейки сетки не более 25 х 25 мм. Высота ограждений в помещениях должна быть не менее 1,8 м; расстояние от токоведущих частей до ограждений (в установках U ≤ 1000 В): при сплошном – не менее 95 мм, при сетчатом – не менее 165 мм.

Применяют в цехах два вида блокировок: механические и электрические. Механические блокировки применяют для блокирования кожухов рубильников, пускателей, выключателей с их включающим устройством (рис. 5.4). При включенном рубильнике (пускателе) механическое устройство не позволяет снять ограждающий кожух, а при снятом ограждающем кожухе механизм не позволяет включить рубильник (пускатель).

Рис. 5.4. Механическая блокировка рубильника

1 – рубильник; 2, 3 – выступы; препятствующие включению рубильника при снятом кожухе или снятию кожуха при включенном рубильнике

Электрические блокировки в цехах применяют для блокирования с электромагнитными пускателями (контакторами) заслонок и крышек электрических нагревательных камерных и шахтных печей, ограждающие кожухи конденсаторных батарей машинных генераторов, дверцы металлических шкафов ламповых генераторов ТВЧ (анодный трансформатор, анодный выпрямитель, колебательный контур, высококачественный закалочный трансформатор и др.). При расположении машинных и ламповых генераторов ТВЧ в отдельных помещениях двери в них блокируют с пускателями установок.

Принципиальная схема электрической блокировки двери с электромагнитным пускателем приведена на рисунке 5.5.

Рис. 5.5. Схема электрической блокировки дверей

Принцип действия электрической блокировки состоит в том (рис. 5.5), что в цепь управления магнитного пускателя или контактора установлены специальные контакты БК, механически связанные с открывающимися устройствами в ограждениях. При открывании дверей блокировочные контакты БК размыкают цепь катушки МП пускателя, что приводит к отключению электроустановки от электрической сети. При обрыве этой цепи электроустановка отключается так же, как и при открывании дверей. Это предотвращает возможность несчастного случая при неисправной цепи блокировки. Электроустановка не может быть включена при закрывании дверей, так как замыкание блокировочных контактов БК еще недостаточно: для включения электроустановки требуется обязательно нажать кнопку «Пуск».

Для обеспечения безопасности необходимо, чтобы блокировочные контакты размыкались уже при незначительном растворе дверей (100 – 150 мм), чтобы человек не мог проникнуть за ограждение при неразомкнувшихся контактах.

Электрические блокировки люков и дверей в ограждении грузоподъемных кранов должны автоматически отключать неизолированные троллейные шины при выходе персонала на галерею крана.

В производствах особо опасных по поражению электрическим током при напряжении переменного тока свыше 12 В, постоянного свыше 15 В; в производствах повышенной опасности – при напряжении переменного тока свыше 36 В и постоянного тока свыше 40 В при работе на электрооборудовании электрические блокировки должны исключать прикосновение рабочего инструментом к токоведущим элементам и токопроводящим средам ванн. Для этого двери и другие открывающие устройства в ограждениях необходимо блокировать с магнитным пускателем установки.

5.4. Применение малого напряжения

В промышленности широкое применение нашел ручной переносной электрифицированный инструмент, а также стационарные электроустановки, при эксплуатации которых человек может прикоснуться к токоведущим частям, находящимся под напряжением (электрические печи сопротивления, гальванические ванны, электрические ванны с расплавленными средами, индукторы установок ТВЧ и т.п.). Для создания необходимого уровня электробезопасности при эксплуатации таких электроустановок применяют малое напряжение, такой величины, что при прикосновении к элементам, находящимся под напряжением, напряжение прикосновения не превышает длительно допустимого значения.

Длительно допустимое напряжение прикосновения зависит от параметров помещений и окружающей среды в них.

По степени опасности поражения людей электрическим током ПУЭ делит помещения на три категории:

I – с повышенной опасностью, к которым относятся помещения сырые (относительная влажность воздуха длительно превышает 75 %); жаркие (температура длительно превышает 30°С); с токопроводящими полами; а также помещения, в которых возможно одновременное прикосновение человека к имеющим соединение с землей металлоконструкциям здания, технологическим аппаратом (механизмом и т.п.), с одной стороны, и к металлическим корпусам электрооборудования – с другой.

II. Особо опасные, к которым относятся помещения: особо сырые (относительная влажность близка к 100%); с химически активной средой; имеющие два или более признака помещений с повышенной опасностью.

III. Без повышенной опасности, в которых отсутствуют признаки помещений I и II категорий.

В помещениях повышенной опасности поражения электрическим током для ручного электрифицированного инструмента и установок, в которых человек может прикоснуться к токоведущим элементам, находящимся под напряжением, допускается напряжение переменного тока не выше 36 В, а постоянного тока – не выше 40 В. В помещениях особо опасных по поражению электрическим током соответственно не выше 12 и 15 В.

Для понижения напряжения применяют только понижающие трансформаторы (рис.5.6, 5.7). С целью уменьшения опасности при переходе высшего напряжения на сторону вторичного малого напряжения вторичная обмотка трансформатора заземляется или зануляется.

Рис. 5.6. Заземление понижающих трансформаторов в сети с изолированной нейтралью

Рис. 5.7. Заземление понижающих трансформаторов в сети с заземленной нейтралью

Для III категории (без повышенной опасности) допускается напряжение U ≤ 220 В, но с обязательным заземлением или зануления корпуса оборудования или двойная изоляция, корпус электроприемника изготовляется из нетокопроводящего материала (пластмассы).

5.5. Защитное заземление электроустановок.

Защитное заземление (рис.5.8) – это преднамеренное соединение при помощи проводников 2металлических нетоковедущих частей оборудования1 с токопроводящими элементами 3, находящимися в земле иимеющими хороший контакт с грунтом.

Рис. 5.8. Схема заземляющего устройства.

1 – корпус оборудования; 2 – заземляющая шина (проводник);

3 – заземлитель; (2 + 3) – заземляющее устройство или защитное заземление.

Защитное заземление применяют в трехфазных трехпроводных сетях с изолированной нейтралью в установках напряжением до и выше 1000 В, а также в установках напряжением 110 кВ и выше с глухозаземленной нейтралью источника тока.

В соответствии с требованием ПУЭ защитное заземление (зануление) электроустановок необходимо выполнить:

При напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех электроустановках;

При номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и в наружных установках;

В электросварочных установках независимо от величины напряжения, кроме заземления (зануления) корпусов и других нетоковедущих частей оборудования должно быть осуществлено заземление одного из зажимов (выводов) вторичной цепи источника сварочного тока.

Защитное заземление защищает человека от поражения током при замыкании фазы на корпус оборудования или на землю путем снижения величины напряжения прикосновения (U пр) и напряжения шага (U ш) до допустимых значений (табл. 2).

Напряжение прикосновения – это напряжение между двумя точками (А и В, рис. 5.9.) цепи тока, которых одновременно касается человек. Одной точкой (А) является корпус оборудования, на который замкнула фаза, другой - (В) основание. При растекании тока в земле на ее поверхности появляется напряжение, которое уменьшается в зависимости от увеличения расстояния (х) до места стекания тока в землю.

Напряжение прикосновения

U пр = U A - U B = U 3 × a 1 2 (5.1)

где U з = I 3 × R 3 – напряжение на заземлителе (то же самое и на корпусе оборудования);

a 1 – коэффициент напряжения прикосновения, для полушаровых заземлителей a 1 = (Х – Х 3) / Х (Х 3 – размер заземлителя,

Х – расстояние от заземлителя).

При Х = Х 3 коэффициент a 1 = 0, т.е. U пр = 0; при Х > Х 3 коэффициент a 1 ® 1, следовательно Uпр ® U 3 . Другими словами: чем ближе человек находится к заземлителю, тем меньше будет напряжение прикосновение, чем дальше – тем больше. Это хорошо видно из схемы на рис. 5.9 и из формулы 5.1: напряжение в точке А остается постоянным, а в точке В изменяется от максимального значения до нуля.

Коэффициент a 2 зависит от сопротивления человека (R h ), обуви (R o ) и пола (R п ), то есть a 2 = R h / (R h + R o + R п ) , следовательно, чем больше будет сопротивление обуви и основания, на котором стоит человек, тем меньше будет a 2 и напряжение прикосновения (U пр ).

Напряжение шага – это напряжение между двумя точками (С и Д, рис. 5.9) электрической цепи тока, находящимся одна от другой на расстоянии шага (а = 0,8 м, рис.5.9), на которых одновременно стоит человек.

U ш = U c U д = U 3 × b 1 × b 2 (5.2)

где b 1 – коэффициент напряжения шага, зависит от заземлителя.

(5.3)

Анализ уравнения (5.3) и схемы на рис. 5.9 показывает, что чем ближе к месту стекания тока в землю, тем больше коэффициент b 1 и, следовательно, больше напряжение шага. С увеличением расстояния от места стекания тока коэффициент b 1 уменьшается и снижается напряжение шага.

Коэффициент b 2 равен коэффициенту a 2 , т.е. b 2 = a 2 = R h / (R h + R o + R п ) .

Для снижения напряжений прикосновения и шага (соответственно величины тока, протекающего через человека) необходимо уменьшить напряжение (U 3 ) на заземляющем устройстве (формулы 5.1, 5.2) при замыкании на него фазы. Напряжение на корпус при замыкании на него фазы U к = U з = I з × R з зависит от тока замыкания (I 3) и сопротивления заземляющего устройства (R 3). Величина тока замыкания зависит в основном от полного сопротивления изоляции фаз относительно земли = U ф / (Z / З). Для ограничения тока замыкания () в первую очередь необходимо поддерживать сопротивление изоляции фаз сети на нормированном уровне. Сопротивление заземляющего устройства (R 3 ) также не должно превышать допустимых нормируемых значений. Кроме того, необходимо уменьшать расстояние между элементами заземлителя для выравнивания потенциалов на поверхности основания, увеличивать удельное электрическое сопротивление обуви (R o ) и основания (R п ). Данные мероприятия позволяют снизить напряжение прикосновения и шага до допустимых величин.

Заземлители подразделяются на естественные, искусственные и комбинированные (естественные + искусственные).

В качестве естественных заземлителей разрешается использовать токопроводящие элементы, находящиеся в земле и имеющие хороший контакт с грунтом, кроме трубопроводов с горючими жидкостями, газами и парами. Когда сопротивление естественных заземлителей превышает нормируемое значение, то к ним дополнительно размещают искусственные. Искусственные заземлители могут быть в виде горизонтальных металлических полос толщиной не менее 4 мм и вертикальных стержней из круглой стали диаметром не менее 10 мм, металлических уголков с толщиной полки не менее 3,5 мм, металлических труб с толщиной стенки не менее 3,5 мм и т.п. Все элементы заземляющего устройства между собой соединяются при помощи сварки (рис. 5.10), только к корпусам оборудования разрешено болтовое присоединение.


Рис. 5.10. Схемы присоединения элементов заземляющих шин

В качестве заземляющих проводников в цехах используют все металлические конструкции здания, а также подкрановые пути мостовых кранов и кранбалок, кроме трубопроводов с горючими жидкостями, газами, парами и свинцовых оболочек кабелей. Если металлические конструкции имеют болтовое или заклепочное соединение, то их между собой соединяют стальными перемычками сечением не менее 100 мм 2 при помощи сварки.

Кроме того, в цехах прокладывают магистральные заземляющие шины по стенам здания на высоте 400 – 600 мм от пола. В сухих помещениях шины крепят к стене, (рис. 5.11, а), а в сырых помещениях и с агрессивной средой – на кронштейнах (рис.5.11, б) . Минимальные размеры заземляющих шин, проложенных в помещении цеха: круглые из оцинкованной проволоки – диаметр не менее 5 мм, прямоугольные сечением 4 х 6 мм площадью не менее 24 мм 2 , металлический уголок с толщиной полки не менее 2,5 мм, металлические трубы с толщиной стенки не менее 2,5 мм. Соединяют элементы заземляющих шин при помощи сварки в нахлестку (рис. 5.10). Внутри цеха заземляющие шины образуют контур, который не менее чем в двух местах соединяется при помощи сварки с заземлителем, расположенным снаружи цеха. Внутри цеха заземляющие шины окрашивают в черный цвет. Внутренние заземляющие шины дверные проемы обходят по верху. В исключительных случаях заземляющие шины прокладывают в металлических трубах в полу при обходе дверных проемов.

Корпуса оборудования к магистральным заземляющим шинам присоединяют при помощи специальных заземляющих шин или используют для этого металлические трубы, в которых прокладывают провода или кабели для подвода электроэнергии к электроприемнику.

Корпуса оборудования к магистральным заземляющим шинам разрешается присоединять только параллельно (рис. 5.12).

Искусственные заземлители подразделяются на контурные и выносные (рис.5.12).

Контурные искусственные заземлители (рис. 5.12) располагают снаружи по периметру здания на расстоянии 1 – 1,5 м от отмостки стены здания. Для этого роют траншею глубиной 0,5 – 1,0 м, в которую забивают вертикальные стержни длиной 1,5 – 3 м и соединяют их металлической полосой при помощи сварки. Затем эту полосу соединяют проводником не менее чем в двух местах с магистральной заземляющей шиной цеха с помощью сварки. Измеряют сопротивление заземлителя и заземляющего устройства и засыпают траншею землей.

1 – прямоугольного сечения;

2 – круглого сечения

Рис. 5.11. Крепление заземляющих шин к стене здания:

а – в сухих помещениях; б – в сырых помещениях и в помещениях с агрессивной средой

Когда удельное электрическое сопротивление грунта вокруг здания высокое (r > 1000 Ом × м) или разместить заземлитель по техническим причинам невозможно, то заземлитель располагают вдали от здания (рис. 5.12).

Рис. 5.12. Схемы искусственных заземляющих устройств.

При одинаковых условиях уровень электробезопасности при контурном заземляющем устройстве выше, чем при выносном. При контурном заземлителе напряжение прикосновения внутри контура U пр = I 3 R з a 1 × a 2 = ,

где a 1 » 0,15…0,4 , а при выносном – внутри помещения U пр = I 3 × R 3 × a 1 × a 2 где a 1 » 1 , т.е. при выносном заземлителе создавать необходимый уровень электробезопасности в основном можно только за счет снижения сопротивления заземлителя (R 3).

Сопротивление заземляющих устройств регламентировано ПУЭ и ПТБ электроустановок потребителей. В установках U до 1000 В с изолированной нейтралью сопротивление заземляющего устройства должно быть не более 4 Ом. При мощности трансформаторов или генераторов 100 кВ×А и менее допускается сопротивление заземляющего устройства не более 10 Ом.

В установках U > 1000 В с изолированной нейтралью сопротивление заземляющего устройства должно быть не более:

При использовании заземляющего устройства одновременно и для установок до 1000 В

R 3 = 125 / I 3 £ 10 Ом

где I 3 – расчетный ток замыкания на землю, А;

При использовании заземляющего устройства только для электроустановок выше 1000 В

R 3 = 250 / I 3 £ 10 Ом;

Если I 3 > 500 А, то R 3 £ 0,5 Ом.

Сопротивление заземлителей как естественных, так и искусственных рассчитывают. При совместном использовании естественных и искусственных заземлителей сначала рассчитывают сопротивление естественных заземлителей, а затем определяют какую величину сопротивления должен иметь искусственный заземлитель (R и).

, Ом

где R н – нормируемое сопротивление заземлителя, Ом;

R е - сопротивление естественных заземлителей, Ом.

Методика расчета искусственных заземлителей.

1) Рассчитывают сопротивление стекания тока с вертикального стержня

2) Определяют необходимое количество вертикальных стержней

N = R е (R н × h c ), шт.

3)Рассчитывают сопротивление стеканию тока с соединительной полосы

, Ом

4) Определяют общее сопротивление заземлителя

, Ом

5) Сравнивают с нормируемым

R к £ R н

6) Если R к > R н - увеличивают количество элементов искусственного заемлителя и расчет проводят до тех пор, пока R к £ R н

где r - удельное сопротивление грунта, Ом×м;

ℓ – длина стержня, м;

d - диаметр стержня, м;

H – расстояние от поверхности земли до середины стержня, м;

L – длина соединительной полосы, м;

В – ширина соединительной полосы, м;

h – расстояние от поверхности земли до соединительной полосы;

h с, h п – коэффициенты экранирования (значения табличные).

Сопротивление цеховых заземлителей необходимо измерять не реже 1-го раза в год. Измеряют сопротивление заземлителей прибором ЭКО – 200 или мостом МС – 08. затем сравнивают с допустимым, т.е. R из £R н

Выборочное вскрытие грунта для осмотра заземлителей в наиболее опасных местах проводят не реже 1 раза в 10 лет.

5.6. Зануление электрооборудования

Зануление применяется для защиты людей от поражения электрическим током при замыкании фазы на корпус в 3-х фазных 4-х проводных сетях с глухозаземленной нейтралью источника тока напряжением до 1000 В.

При занулении оборудования (рис. 5.13) корпус оборудования 1 при помощи токопровода 2 соединяют с нулевым защитным проводником 3 (Н.3.П)

Рис. 5.13. Зануление электрооборудования

Защита от поражения током при занулении оборудования осуществляется в момент замыкания фазы на корпус одновременно двумя защитными действиями:

– снижением напряжения на корпусе относительно земли (U к.з.) в 4 раза, то есть напряжение прикосновения снижается в четыре раза, так как U пр = U к-з = U ф / 4;

– превращением тока однофазного замыкания () вследствие малого сопротивления нулевого защитного проводника (обычно Z H ≈ 0,1 – 0,2 Ом) в ток однофазного короткого замыкания (), который возрастает в несколько раз или на несколько порядков, что приводит к надежному срабатыванию максимальной токовой защиты (МТЗ) и отключению поврежденной установки за допустимое время (τ) в зависимости от величины напряжения прикосновения (см. табл. 2).

Кроме заземления нулевой точки источника питания нулевой защитный проводник заземляют повторно (R п) через каждые 500 м (рис. 5.13), а также при вводе в производственные и общественные здания.

Корпуса оборудования соединяют с нулевым защитным проводником, расположенным в распределительных электрических щитах, при помощи специальных проводов (изолированных или голых), заземляющих жил кабелей или металлических труб, в которых находятся провода или кабеля для подвода энергии к электроустановке. Иногда в цехе прокладывают заземляющую магистральную шину (как при защитном заземление), которую в распределительном пункте присоединяют к нулевой точке источника и ее заземлителю. Корпуса оборудования к заземляющей шине присоединяют точно также, как при защитном заземлении.

При занулении оборудования с помощью проводников на их концы надевают (запрессовывают) наконечники из латунных гильз.

Наконечники проводников при помощи болтов с гайками и пружинными шайбами присоединяют к корпусу оборудования и нулевому проводнику (нулевой точке источника), находящемуся в электрическом распределительном пункте (РП) или щите (РЩ).

Минимальные размеры медных и алюминиевых проводников по механической прочности для зануления оборудования приведены в таблице 3.

Таблица 3

Минимальные размеры проводников для зануления оборудования

Заземляющие проводники для присоединения повторных заземлителей к нулевому защитному проводнику нужно выбирать по условию длительного допустимого тока, но не менее чем для 25 А.

Проводимость нулевого защитного проводника должна быть не менее 0,5 проводимости фазного проводника. В нулевой защитный проводник запрещено устанавливать всякого рода предохранители, разъединители и тому подобное.

Сопротивление заземляющих устройств, к которым присоединены нейтрали трансформаторов или генераторов или выводы источников однофазного тока, в любое время года должно быть не более 2,4 и 8 Ом соответственно при U л 660, 380 и 220 В источников 3-х фазного тока или 380, 220 и 127 В источников однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали трансформатора или генератора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при U л 660, 380 и 220 В источника 3-х фазного тока или 380, 220 и 127 В источника однофазного тока.

Методика расчета зануления

1) Номинальный ток электроустановки , А;

2) Пусковой ток электроустановки , А;

3) Расчетный ток защиты , А;

4) По I з.р выбирают токовую защиту для электроустановки I МТЗ ;

5) Проверяют надежность срабатывания максимально токовой защиты ;

6) Рассчитывают ток однофазного короткого замыкания , А;

7) Если не выполняется условие - уменьшают сопротивление Z ф и Z н за счет увеличения площади поперечного сечения фазного и нулевого проводов, и снова производят расчет

где Р – мощность электроустановки, кВт;

U л – линейное напряжение, В;

К п – коэффициент пуска;

К р – коэффициент режима работы электроустановки;

К з – коэффициент защиты, для плавких предохранителей в нормальных условиях К з ≥ 3, для взрывоопасных условий К з ≥ 4. Для электромагнитных расцепителей К з указан в паспорте автоматического выключателя;

Z тр – сопротивление трансформатора, Ом.

Измерение параметров электросети (сопротивление петли фаза-нуль, напряжения в сети, тока однофазного короткого замыкания) для проверки надежности срабатывания максимально токовой защиты (МТЗ) проводят не реже 1-го раза в 5 лет не менее чем у 10 % оборудования.

Прибором ЭКО – 200 измеряют ток однофазного короткого замыкания () и проверяют надежность срабатывания МТЗ, то есть ≥ К з · I МТЗ (К – коэффициент кратности: для плавких вставок К ≥ 3, для электромагнитных выключателей К ≥ 1,25 – 1,4).

Приборами ЕР – 180 измеряют сопротивление петли (Z п) фаза-нуль, напряжение фазы (U ф) и рассчитывают ток однофазного короткого замыкания () по формуле = U ф / Z п , а затем проверяют надежность срабатывания МТЗ, то есть ≥ К з · I МТЗ .

5.7. Защитное отключение

Защитное отключение – система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения человека электрическим током. Такая опасность возникает при замыкании фазы на землю или корпус оборудования, снижении сопротивления изоляции, неисправности заземления или зануления и устройств защитного отключения. Чтобы обеспечить безопасность, защитное отключение должно осуществлять следующие виды защиты:

– защиту от глухих и от неполных замыканий на землю (корпус);

– защиту от утечек тока (контроль изоляции);

–автоматический контроль цепи заземления или зануления и самоконтроль.

При повреждении электроустановки изменяется ряд параметров в электрической сети, которые используются как входные сигналы для автоматического защитного устройства. Так при замыкании фазы на корпус оборудования последний оказывается под напряжением относительно земли (U з). При разном сопротивлении изоляции фаз относительно земли возникает напряжение между нейтралью источника и землей U 0 (напряжение нулевой последовательности) и тому подобное.

По принципу действия устройства защитного отключения подразделяются на следующие виды:

– на напряжении корпуса относительно земли;

– на токе замыкания на землю;

– на напряжении нулевой последовательности;

– на токе нулевой последовательности;

– на напряжении фазы относительно земли;

– вентильные;

– на переменном оперативном токе;

– на постоянном оперативном токе;

– комбинированные.

В электроустановках напряжением до 1000 В некоторые устройства защитного отключения (на токе нулевой последовательности, вентильные) при соответствующих установках тока обеспечивают безопасность при прикосновении человека к фазе (I ус ≤ 10 мА ).

Защитное отключение как самостоятельная мера безопасности может применяться только при выполнении одновременно двух условий:

– защищать от поражения током при прикосновении человека к фазе, находящейся под напряжением;

– осуществлять самоконтроль.

Во всех других случаях защитное отключение применяться как дополнительное к другим видам защиты (защитное заземление, зануление и так далее).

В качестве примера рассмотрим принцип работы устройства защитного отключения на напряжении корпуса относительно земли (рис. 5.14)

Рис. 5.14. Схема защитного отключения на напряжении корпуса относительно земли

В схемах этого типа датчиком служит реле напряжения РЗ (рис. 5.14), включенное между корпусами и вспомогательным заземлителем R в. При замыкании фазы на корпус через реле РЗ протекает ток и между корпусом и землей возникает напряжение (U к-з ).

При определенной величине напряжение U к-з реле напряжения РЗ срабатывает и разрывает нормально замкнутые контакты в цепи котушки ОК или МП магнитного пускателя, что приводит к отключению поврежденной электроустановки от сети.

Напряжение срабатывание реле РЗ

, В

где Z – полное сопротивление реле РЗ, ОМ;

R в – сопротивление вспомогательного заземлителя, Ом;

U пр.д.д – длительно допустимое напряжение прикосновения, В;

α 1 – коэффициент напряжения прикосновения.

Достоинством схемы на напряжении корпуса относительно земли является ее простота. Недостатки – необходимость применения вспомогательного заземлителя, не селективность при общем заземлении и отсутствие самоконтроля. Такие устройства могут применяться только совместно с заземлением или другими мерами защиты.

Эта схема может применяться в сетях любого напряжения, как с изолированной, так и заземленной нейтралью.

Рис. 5.15 Изолирующая Рис. 5.16 Схемы токоизмерительных

оперативная штанга клещей переменного тока

Рис. 5.17 Общий вид (а) и Рис 5.18 Схема действия однополюсного

принципиальная схема (б) токоскателя

указателя высокого напряжения

Рис 5.19 Диэлектрические резиновые Рис. 20 Инструмент слесарно –

перчатки, галоши, боты и коврик монтажный с изолирующими

рукоятками

5.8 Электрозащитные средства и предохранительные приспособления

Для защиты людей, обслуживающих или работающих на электроустановках, от поражения током, ожогов и действий электрической дуги необходимо применять специальные защитные средства: изолирующие средства, указатели напряжений и тока, временные защитные заземления, переносные ограждения, защитные очки или маски, плакаты безопасности и так далее.

По степени надежности изолирующие защитные средства делятся на основные и дополнительные. Основными считаются те защитные средства, изоляция которых может выдержать рабочее напряжение установки и при помощи которых допускается непосредственное прикосновение к токоведущим частям, находящимся под напряжением. Дополнительными являются защитные средства, служащие для усиления действия основных средств.

К основным электрозащитным средствам, применяемым в электроустановках U до 1000 В, относятся:

изолирующая штанга (рис. 5.15)

электроизмерительные клещи (рис. 5.16)

указатели напряжения (рис. 5.17, 5.18)

диэлектрические перчатки (рис. 19,а)

слесарно-монтажный инструмент с изолирующими рукоятками (рис. 20)

К дополнительным электрозащитным средствам в электроустановках U до 1000 В относятся:

диэлектрические галоши, ковры (рис. 5.19, в, г);

переносные заземления;

изолирующие подставки (рис. 5.21);

накладки, колпаки (рис. 5.22);

оградительные устройства (рис. 5.23);

плакаты и знаки безопасности.

Рис. 5.21 Изолирующая подставка Рис. 5. 22 Изолирующий колпак

(а) и изолирующие накладки резиновая (б) и текстолитовая (в)

Рис. 5.23 Щит для временного Рис. 5.24Токоизмерительные клещи

ограждения частей установки, переменного тока

находящихся под напряжением

К основным электрозащитным средствам для работы в электроустановках U > 1000 В относятся:

изолирующие штанги (рис. 5.15, 5.25);

измерительные клещи (рис. 5.24);

указатели напряжения (рис. 5.26) и другие.

К дополнительным средствам при U > 1000 В относятся: диэлектрические перчатки, боты, ковры, подставки, накладки, переносные заземления, оградительные устройства, плакаты и знаки безопасности.

Рис. 5.25 Наложение временного Рис. 5.26 Указатель высокого

переменного заземления на шины напряжения

К средствам индивидуальной защиты относятся защитные очки, рукавицы, противогазы, респираторы, каски, предохранительные монтерские пояса и страховочные канаты.

Выбор необходимых электрозащитных средств регламентируется ПТЭ и ПТБ электроустановок потребителей, а также инструкциями предприятий, составленными на основании этих правил.

Электрозащитные средства должны периодически проходить испытания на диэлектрическую прочность (рис.5.27), а предохранительные монтерские пояса и страховочные канаты испытания на механическую прочность.

Электрозащитные средства следует использовать по их прямому назначению в электроустановках напряжением не выше того, на которое они рассчитаны.

Основные электрозащитные средства рассчитаны на применение в закрытых помещениях, а в открытых установках – только в сухую погоду.

Перед применением средства защиты персонал обязан проверить его исправность, отсутствие внешних повреждений, очистить и обтереть от пыли, проверить по штампу срок годности.

У диэлектрических перчаток перед работой следует проверить наличие проколов путем скручивания их в сторону пальцев.

Пользоваться неисправными средствами защиты, а также если срок годности которых истек, запрещается.

Рис. 5.27. Принципиальная схема испытания диэлектрических перчаток, бот и галош

1 – испытательный трансформатор; 2 – контакты переключателя П; 3 – шунтирующее сопротивление; 4 – газоразрадная лампа; 5 – дроссель; 6 – миллиамперметр; 7 – разрядник; 8 – ванна с водой.

Можно выделить следующие основные меры профилактики электротравматизма :
Изоляция (силовые и осветительные сети низкого напряжения должны иметь сопротивление изоляции на каждом участки сети не менее 0,5 Мом);
Защитное зануление (преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением). При пробое изоляции на корпус происходит однофазное короткое замыкание, вызывающее срабатывание защиты и тем самым автоматическое отключение поврежденной установки от питающей сети;

Защитное заземление (преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут случайно или аварийно оказаться под напряжением). Основным назначением защитного заземления является снижение напряжения прикосновения до безопасной величины;

Естественные заземление (проложенные в земле водопроводные трубы, обсадные трубы артезианских колодцев, скважин, металлические конструкции зданий, соединенные с землей);

Искусственные заземлители (вертикальные и горизонтальные электроды (контуры): стальные трубы диаметром 30-50 мм, стальные уголки от 40х40 мм до 60х60 мм длинной 2,5-3 м, заглубляемые в землю в определенном порядке в соответствии с проектом);
Защитное отключение (быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током. Основные требования: высокая чувствительность, малое время отключения (0,06 - 0,2 сек), достаточная надежность). Защитное отключение является надежной защитой в электроустановках, когда по какой-либо причине трудно осуществить эффективное заземление или зануление, а также, когда высока вероятность случайного прикосновения к токоведущим частям.

Электрическое разделение сетей. Разветвленные сети большой протяженности имеют значительные емкости и небольшие активные сопротивления изоляции относительно земли. Однофазное прикосновение в таких случаях весьма опасно. Электрическое разделение сети, т.е. разделение сети на отдельные, не связанные между собой участки, способствует резкому снижению опасности поражения электрическим током за счет уменьшения емкостной и активной проводимости. Для разделения сети применяются разделяющие трансформаторы, позволяющие изолировать электроприемники от сети, а также преобразователи частоты и выпрямительные устройства, которые связываются с питающей их сетью через трансформаторы.



Применение малых напряжений. Малым называется номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Малые напряжения используются для питания электрифицированного инструмента, переносных светильников и местного освещения в помещениях с повышенной опасностью и особо опасных.

57.Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.).Эквивалентом земли может быть вода реки или моря, каменный уголь в карьерном залегании и т. п. Назначение защитного заземления - устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам. Принцип действия защитного заземления - снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами. Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования). Заземление будет эффективным лишь в том случае, если ток замыкания на землю IЗ практически не увеличивается с уменьшением сопротивления заземлителя. Такое условие выполняется в сетях с изолированной нейтралью (типа IT) напряжением до 1 кВ, так как в них ток замыкания на землю в основном определяется сопротивлением изоляции проводов относительно земли, которое значительно больше сопротивления заземлителя.



Типы заземляющих устройств. Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают два типа заземляющих устройств: выносное и контурное. Выносное заземляющее устройство характеризуется тем, что заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки. Поэтому выносное заземляющее устройство называют также сосредоточенным. Контурное заземляющее устройство характеризуется тем, что электроды его заземлителя размещаются по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки. Часто электроды распределяются на площадке по возможности равномерно, и поэтому контурное заземляющее устройство называется также распределенным.

Безопасность при распределенном заземляющем устройстве может быть обеспечена не только уменьшением потенциала заземлителя, но и выравниванием потенциалов на защищаемой территории до таких значений, чтобы максимальные напряжения прикосновения и шага не превышали допустимых. Это достигается за счет соответствующего размещения одиночных заземлителей на защищаемой территории.

Зануление - это преднамеренное электрическое соединение открытых проводящих частей электроустановок с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Для соединения открытых проводящих частей потребителя электроэнергии с глухозаземленной нейтральной точкой источника используется нулевой защитный проводник.

Зануление необходимо для обеспечения защиты от поражения электрическим током при косвенном прикосновении за счет снижения напряжения корпуса относительно земли и быстрого отключения электроустановки от сети.

Принцип действия зануления. При замыкании фазного провода на зануленный корпус электропотребителя образуется цепь тока однофазного короткого замыкания (то есть замыкания между фазным и нулевым защитным проводниками). Ток однофазного короткого замыкания вызывает срабатывание максимальной токовой защиты, в результате чего происходит отключение поврежденной электроустановки от питающей сети. Кроме того, до срабатывания максимальной токовой защиты происходит снижение напряжения поврежденного корпуса относительно земли, что связано с защитным действием повторного заземления нулевого защитного проводника и перераспределением напряжений в сети при протекании тока короткого замыкания. зануление обеспечивает защиту от поражения электрическим током при замыкании на корпус за счет ограничения времени прохождения тока через тело человека и за счет снижения напряжения прикосновения.

Назначение нулевого защитного проводника в схеме зануления - обеспечить необходимое для отключения установки значение тока однофазного короткого замыкания путем создания для этого тока цепи с малым сопротивлением.

Расчет зануления имеет целью определить условия, при которых оно надежно выполняет возложенные на него задачи - быстро отключает поврежденную установку от сети и в то же время обеспечивает безопасность прикосновения человека к зануленному корпусу в аварийный период. В соответствии с этим зануление рассчитывают на отключающую способность.

Защитным отключением называется автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Назначение защитного отключения - обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека. Защита осуществляется специальным устройством защитного отключения (УЗО), которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током.

Область применения: электроустановки в сетях с любым напряжением и любым режимом нейтрали.

Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (устав-кой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

Изоляция токоведущих частей

Рабочая изоляцияобеспечивает нормальную работу электроустановок и защиту от поражения электрическим током.

Дополнительная изоляцияпредусмотрена наряду с рабочей для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

Двойнойназывается изоляция, состоящая из рабочей и дополнительной. Материалы, используемые для рабочей и дополнительной изоляции, имеют различные свойства, что делает маловероятным одновременное их повреждение.

Усиленная изоляция-это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная изоляция, но конструктивно выполненная так, что каждую из составляющие изоляции отдельно испытать нельзя.

С двойной изоляцией изготавливаются отдельные электротехнические изделия, например, ручные светильники, ручные электрические машины (электроинструмент), разделяющие трансформаторы. Част в качестве дополнительной изоляции используется корпус электроприемника, выполненный из изоляционного материала. Такой корпус защищает от поражения электрическим током не только при пробое изоляции внутри изделия, но и при случайном прикосновении рабочей части инструмента к токоведущей части. Если же корпус изделия металлический, то роль дополнительной изоляции играют изоляционные втулки, через которые питающий кабель проходит внутрь корпуса, и изолирующие прокладки, отделяющие электродвигатель от корпуса.

Усиленная изоляция используется только в тех случаях, когда двойную изоляцию затруднительно применить по конструктивным причинам, например, в выключателях, щёткодержателях и др.

Изделия, имеющие двойную изоляцию и металлический корпус, запрещается заземлять или занулять

Для выявления дефектов и повреждений проводятся приёмосдаточные испытания - для вновь вводимого в эксплуатацию или прошедшего восстановительный ремонт или реконструкцию оборудования.Испытание изоляции на прочность производится повышенным напряжением от постороннего источника (например, передвижные электроустановки переменного тока). Выявленные дефекты устраняются, производятся повторные испытания исправленного оборудования.Изоляция считается выдержавшей испытание, если при приложении полного испытательного напряжения не наблюдается скользящих разрядов, толчков тока, утечки или нарастания установившегося значения тока, пробоя или перекрытий изоляции, а если R из , измеренное мегомметром, после испытания осталось прежним. Контроль состояния изоляции – это измерение ее активного сопротивления. Он бывает:Периодический. И Постоянный.1. Периодический контроль: 1). Первичный (при приемке в эксплуатацию после монтажа и далее).2). Периодический (в сроки, установленные ПУЭ и ПТЭ).3). Внеочередной (при обнаружении дефектов).Измерения должны производиться при отключенной установке. При таком измерении можно определить R из отдельных участков сети.Судить об исправности или о появлении дефектов можно только при сравнении с результатами предыдущих измерений. Если обнаружено резкое уменьшение R из , то это указывает на количество дефектов изоляции.2. Постоянный контроль. Постоянный контроль – измерение R из под рабочим напряжением в течении всего времени работы электроустановки без автоматического отключения. При снижении R из ниже установленного предела (замыкается цепь сигнализации), подается звуковой и/или световой сигнал.В сетях с изолированной нейтралью постоянный контроль осуществляется без изменения схемы сети.В сетях с глухо-заземленной нейтралью требуется нейтраль трансформатора изолировать от земли по постоянному току и соединять ее с заземлением через малое переходное сопротивление по переменному току 50 Гц.Для выполнения этого нейтраль трансформатора соединяется с заземлением через разделительный конденсатор большой емкости или через последовательный резонансный контур, настроенный на промышленную частоту.

К защитным средствам от прикосновений к токоведущим частям электроустановок относятся: изоляция, ограждение, блокировка, электрозащитные средства, сигнализация и плакаты.
Изоляция проводов характеризуется ее сопротивлением. Высокое сопротивление изоляции проводов от земли и корпусов электроустановок создает безопасные условия для обслуживающего персонала. Во время работы электроустановок состояние электрической изоляции ухудшается за счет нагревания, механических повреждений, влияния климатических условий и окружающей производственной среды: химически активных веществ и кислот, температуры, давления, большой влажности (выше 80%) и чрезмерной сухости. Состояние изоляции характеризуется сопротивлением току утечки. Ограждения применяются сплошные и сетчатые. Они должны быть огнестойкими. Сплошные ограждения (кожухи и крышки) и сетчатые применяются в электроустановках напряжением до 1000 В и выше 1000 В. В электроустановках напряжением выше 1000 В должны соблюдаться допустимые расстояния от токоведущих частей до ограждений, которые нормируются ПУЭ.Блокировка применяется в электроустановках напряжением выше 250 В, в которых часто производятся работы на ограждаемых токоведущих частях. Она снимает напряжение с токоведущих частей электроустановок при проникновении к ним без снятия напряжения. По принципу действия блокировки делят на механические, электрические и электромагнитные.
К электрозащитным средствам относятся: 1) изолирующие средства (оперативные изолирующие штанги и клещи, диэлектрические резиновые перчатки, рукавицы, боты, галоши, коврики и дорожки, а также изолирующие подставки);2) переносные указатели напряжения и токоизмерительные клещи.
Изолирующие защитные средства делятся на основные и дополнительные.Основными называются такие средства, изоляция которых надежно выдерживает рабочее напряжение электроустановки. При использовании этих средств допускается прикосновение к токоведущим частям, находящимся под напряжением. К основным изолирующим защитным средствам относятся: в. электроустановках напряжением выше 1000 В изолирующие штанги, клещи, лестницы, площадки; в электроустановках напряжением до 1000В диэлектрические перчатки и инструмент с изолирующими рукоятками.Дополнительными называются такие изолирующие защитные средства, которые сами по себе не могут обеспечить безопасность от поражения током. Они являются дополнительной мерой защиты к основным защитным средствам. К дополнительным в электроустановках напряжением выше 1000 В относятся диэлектрические перчатки, рукавицы, галоши, боты, коврики, дорожки и изолирующие подставки; до 1000 В - диэлектрические галоши, коврики и подставки. Изолирующие электрозащитные средства должны проходить соответствующие испытания на электрическую и механическую прочность .Сигнализация привлекает внимание работающих и предупреждает их неправильное действие при обслуживании электроустановок. Она осуществляется при помощи ламп накаливания или неоновых ламп. Плакаты также имеют важное значение в обеспечении электробезопасности. Они разделяются на виды: запрещающие, предостерегающие, напоминающие, разрешающие.

Код климатического исполнения электрооборудования.

У - Для умеренного климата. Средняя из ежегодных абсолютных максимумов температура воздуха равна или ниже +40 °С, средняя из ежегодных абсолютных минимумов температура выше -45 °С. Диапазон рабочих температур при эксплуатации -45...+40 °С.

ХЛ - Для холодного климата. Средняя из ежегодных абсолютных минимумов температура ниже -45 °С. Диапазон рабочих температур при эксплуатации -60...+40 °С.

УХЛ - Для умеренного и холодного климата. Диапазон рабочих температур при эксплуатации -60...+40 °С.

ТВ - Для влажного тропического климата. Сочетание температуры, равной или выше +20 °С и относительной влажности выше 80% наблюдается 12 и более часов в сутки за непрерывный период более 2 месяцев (концентрация хлоридов - менее 0,3 мг/м2·сут., сернистого газа - 20 - 250 мг/м2·сут.). Диапазон рабочих температур при эксплуатации +1...+40 °С.

ТС - Для сухого тропического климата. Средняя из ежегодных абсолютных максимумов температура воздуха выше +40 °С (концентрация хлоридов - менее 0,3 мг/м2·сут., сернистого газа - 20 - 250 мг/м2·сут.). Диапазон рабочих температур при эксплуатации -10...+50 °С.

О - Общеклиматическое исполнение. Для макроклиматических районов на суше, кроме района с очень холодным климатом (концентрация хлоридов - 0,3 - 30 мг/м2·сут., сернистого газа - 20 - 250 мг/м2·сут.). Диапазон рабочих температур при эксплуатации -60...+50 °С.

В - Всеклиматическое исполнение.
Для макроклиматических районов на суше и на море, кроме района с очень холодным климатом (концентрация хлоридов - 0,3 - 300 мг/м2·сут., сернистого газа - не более 250 мг/м2·сут.). Диапазон рабочих температур при эксплуатации -60...+50 °С.

1 - Для работы на открытом воздухе

2 - Для работы в помещениях, где колебания влажности воздуха не очень отличаются от колебаний на открытом воздухе, например: в палатках, кузовах, прицепах, металлических помещениях без теплоизоляции, а также в кожухах комплектных устройств категории 1 или под навесом (отсутствует прямое действие солнечной радиации и атмосферных осадков на изделие).

3 - Для работы в закрытых помещениях с природной вентиляцией, без искусственного регулирования климатических условий, где колебания температуры и влажности воздуха, а также действие песка и пыли значительно меньше, чем снаружи, например: в металлических с теплоизоляцией, каменных, бетонных, деревянных помещениях (значительное уменьшение дейсвия солнечной радиации, ветра, атмосферных осадков, отсутствие росы).

4 - Для работы в помещениях с искусственно регулируемым микроклиматом, например: в закрытых обогреваемых и вентилируемых производственных и других, в том числе подземных, помещениях с хорошей вентиляцией (отсутствие прямого действия атмосферных осадков, ветра, а также песка и пыли внешнего воздуха).

5 - Для работы в помещениях с повышенной влажностью.

Условное обозначение климатического исполнения и категории размещения приводят в конце условного обозначения типа (марки) оборудования, например, ….УХЛ3

Воздействие токсических веществ на организм человека в условиях производства не может быть изолированным от влияния других неблагоприятных факторов, таких, как высокая и низкая температура, повышенная, а иногда и пониженная влажность, вибрация и шум, различного рода излучения и др. При сочетанном воздействии вредных веществ с другими факторами эффект может оказаться более значительным, чем при изолированном воздействии того или иного фактора.

Температурный фактор. При одновременном воздействии вредных веществ и высокой температуры возможно усиление токсического эффекта.

Выраженность токсического эффекта при сочетанном воздействии с повышенной температурой может зависеть от многих причин: от степени повышения температуры, пути поступления яда в организм, концентрации или дозы яда. Высокая температура воздуха увеличивает летучесть ядов и повышает их концентрации в воздухе рабочей зоны. Понижение температуры в большинстве случаев ведет также к усилению токсического эффекта. Так, при пониженнои температуре увеличивается токсичность оксида углерода, бензина, бензола, сероуглерода и др.

Повышенная влажность воздуха. При повышенной влажности может увеличиваться опасность отравлений в особенности раздражающими газами. Причина, по-видимому в усилении процессов гидролиза, повышении задержки ядов на поверхности слизистых оболочек, изменении агрегатного состояния ядов. Растворение газов и образование мельчайших капелек кислот и щелочей способствует возрастанию раздражающего действия.

Изменение барометрического давления. При повышенном давлении возрастание токсического действия происходит по двум причинам: во-первых, вследствие усиленного поступления яда, обусловленного ростом парциального давления газов и паров в альвеолярном воздухе и ускоренным переходом их в кровь; во-вторых, вследствие изменения многих физиологических функций, в первую очередь дыхания, кровообращения, состояния ЦНС и анализаторов. При пониженном давлении первая причина отсутствует, но усиливается влияние второй. Например, при понижении давления до 500 - 600 мм рт. ст. токсическое действие оксида углерода возрастает в результате того, что влияние яда усиливает отрицательные последствия гипоксии и гиперкапнии.

Шум и вибрация. Производственный шум может усиливать токсический эффект. Это доказано для оксида углерода, стирола, алкилнитрила, крекинг-газа, нефтяных газов, аэрозоля борной кислоты.

Промышленная вибрация аналогично шуму также может усиливать токсическое действие ядов. Например, пыль кобальта, кремниевые пыли, дихлорэтан, оксид углерода, эпоксидные смолы оказывают более выраженное действие при сочетании действия с вибрацией по сравнению с воздействием чистых ядов.

Динамические физические нагрузки активизируют основные вегетативные системы жизнеобеспечения - дыхание и кровообращение, усиливают активность нервно-эндокринной системы, а также многие ферментативные процессы. Увеличение легочной вентиляции приводит к возрастанию общей дозы газообразных веществ и паров, проникающих в организм через дыхательные пути; В связи с этим увеличивается опасность отравления наркотиками, раздражающими парами и газами, токсическими пылями. Более быстрому распределению яда в организме способствует увеличение скорости кровотока и минутного объема сердца. Повышение функциональной активности печени, желез внутренней секреции, нервной системы и увеличение кровоснабжения в интенсивно работающих органах может сделать их более доступными действию яда.

Режимные параметры оборудования, определяющие безопасность производства в целом, зависят от особенностей технологического процесса, типа оборудования, его назначения, рабочей среды.

Температура среды в оборудовании задаётся в соответствии с тепловым режимом процесса. Регули-

рование температуры процесса возможно изменением скорости и температуры тепло- или хладоагента,расхода и температуры компонентов исходного сырья и т.д. Если в результате принятых мер не удаётся восстановить нормальную температуру процесса, то должны быть приняты меры к экстренной (аварийной) остановке оборудования или производства в целом. Многие технологические процессы проводятся под избыточным давлением. Различают избыточное давление условное, пробное и ра-

бочее. Под условным давлением понимается наибольшее давление при температуре среды 20 °С, при котором допустима длительная работа оборудования и деталей трубопровода. Пробное давление – это давление, при котором должно проводиться гидравлическое испытание на прочность. Рабочее же давление – наибольшее значение давления, обеспечивающего заданный режим эксплуатации.

Причинами непредусмотренного процессом повышения давления в аппаратах могут быть: повышение температуры среды, нарушение стабильности качественного и количественного состава сырья, закупорка отходящих от аппарата коммуникаций, неисправность регуляторов давления на стороне нагнетания насосов или компрессоров, нарушение правильной порционной дозировки (при периодических процессах) компонентов сырья и интенсивности перемешивания среды и др.

Повышение давления приводит либо к разгерметизации оборудования, либо к его взрыву.

Поскольку в производственных условиях возможны отклонения от заданного режима, необходимо непрерывно контролировать и поддерживать установленные параметры процесса. Этой цели служат автоматические дозаторы, регуляторы температуры среды и уровня жидкости в аппарате, регуляторы давления и т.д. На случай отказа приборов управления и регулирования технологические аппараты снабжаются системами противоаварийной защиты, в том числе предохранительными устройствами.

Под надёжностью оборудования понимается его комплексное свойство выполнять заданные функции,сохраняя свои основные эксплуатационные характеристики в установленных пределах. В это понятие входят безотказность, долговечность и ремонтопригодность. Показателями надёжности являются вероятность безотказной работы оборудования, срок службы, наработка на отказ и т.д. Снижение надёжности оборудования может привести к постепенному нарушению технологического процесса – постепенному отказу, ухудшению качественных и количественных показателей системы. Безотказность-свойство оборудования непрерывно сохранять работоспособность, оценивается по результатам анализа фактических

параметров работы оборудования (производительности, температуры, давления, потребляемой мощности, расхода сырья и выхода целевого продукта с учётом его качественных показателей) между двумя после-

довательными ремонтами.

Основная задача, связанная с повышением безопасности оборудования, заключается в регулировании, вплоть до полной ликвидации, износовых отказов, и создании условий для проявления минимального числа внезапных отказов, их лёгкого и быстрого устранения. В процессе эксплуатации надёжность оборудования поддерживается строгим соблюдением заданных параметров рабочего режима, качественным обслуживанием и своевременным проведением профилактических работ по поддержанию работоспособности оборудования.

Одним из методов повышения надёжности является резервирование, т.е. введение в систему добавочных (дублирующих) элементов, включаемых параллельно основным, что способствует созданию систем, надёжность которых выше надёжности любых входящих в них элементов. При выходе из строя одного из элементов дублёр выполняет его функции и узел не прекращает своей работы.

Для повышения надёжности отдельных единиц оборудования и технологических систем в целом используются также техническая диагностика и техническое обслуживание. Техническое обслуживание – это совокупность организационных и технических мероприятий, направленных на предупреждение отказов,

обеспечение исправного состояния в процессе эксплуатации и готовности объектов к использованию. Техническое обслуживание позволяет поддерживать и восстанавливать требуемый уровень надёжности объектов за счёт организации периодических проверок состояния объектов, замены и ремонта некоторых элементов, регулировки параметров и устранения выявленных неисправностей.В случае необходимости производят ремонт. Ремонт, состоящий в замене и восстановлении отдельных частей оборудования и их регулировке, считается текущим. Ремонт, осуществляемый для восстановления исправности и ресурса работы объекта с заменой или восстановлением любых его частей, включая основные, и их регулировкой, называется капитальным.

Герметизация обеспечивает непроницаемость для газов или жидкостей внутренних частей аппаратов, механизмов, стен зданий, стыков, резьбовых соединений. К герметизации часто прибегают в самых разных областях. Вариант герметизации выбирается в зависимости от конкретных задач и условий (сварка, припайка и холодное напыление.)

К герметизирующим материалам относятся минеральные и листовые материалы, а также разнообразные составы на основе полимеров.

Герметизирующие материалы обычно имеют в своем составе наполнитель и вулканизующие отвердители.

После нанесения герметика собственно герметизирующие компоненты образуются в результате твердения на месте стыка поверхностей (соединительном шве).

Герметики должны быть достаточно прочны, эластичны и устойчивы к действию различных сред и перепадов температур. Материалы, используемые в электротехнических деталях, кроме вышеперечисленных свойств, должны иметь также удовлетворительные электроизоляционные показатели. Герметизация является важнейшим условием обеспечения нормальной работоспособности и долговечности устройств, механизмов и приборов, используемых в разных отраслях техники.

Технологическое оборудование, в котором обращаются горючие, взрывоопасные или токсичные газы (или жидкости) под давлением, испытывают на герметичность в соответствии с действующими нормативными документами. Пневматические испытания на герметичность заключаются в создании в аппарате или трубопроводе максимально разрешённого рабочего давления и контроля его падения в течение не менее 4 часов при периодической проверке и 24 часов для вновь устанавливаемых аппаратов. Вновь устанавливаемое оборудование считается выдержавшим испытание на герметичность, если падение давления в нём за 1 час не

превышает 0,1% при пожаро- и взрывоопасных средах. В оборудовании, подвергающемся повторному испытанию, допускается падение давления до 0,5% в час.

Порядок подготовки и проведения испытаний трубопроводов не отличается от принятого для технологического оборудования. При этом цеховые трубопроводы испытывают совместно с оборудованием цеха.

При испытании газопроводов диаметром более 250 мм падение давления определяют умножением проведённых выше значений на поправочный коэффициент К.

Если потери давления при испытании превышают нормы, то необходимо найти место утечки. Для этого используют специальные приборы (течеискатели) или обмазывают швы, сальники, арматуру и

разъёмные соединения мыльным раствором. После обнаружения мест утечек давление должно быть полностью снято и причины пропусков устранены. Устранение дефектов и подтяжка крепёжных соединений, а также обстукивание корпуса оборудования, находящегося под давлением, не допускаются. После устранения дефектов испытания на герметичность проводят повторно.

ЗАЩИТА ОБОРУДОВАНИЯ ОТ КОРРОЗИИ

В процессе эксплуатации металлические конструкционные материалы подвергаются коррозии. Ущерб,приносимый коррозией металлов, связан не только с технологическими потерями, но и выходом из строя металлических конструкций, химических аппаратов, машин, поскольку нарушается их прочность, герметичность, что в конечном итоге может привести к авариям. По механизму коррозионного действия различают химическую и электрохимическую коррозию. Химическая коррозия вызывается непосредственным воздействием на металл агрессивной среды: кислот, щёлочей, сухих газов (главным образом при высоких температурах). Электрохимическая коррозия представляет собой взаимодействие

металла с раствором электролита, при которой происходит ионизация атомов металла и переход катионов металла в раствор (анодный процесс), а освобождающиеся электроны связываются окислителем (ка-

тодный процесс). Основным показателем скорости коррозии является коррозионная проницаемость, т.е. глубина разрушения металла, выражаемая в миллиметрах в течение года (мм/год). Для изготовления аппаратов, предназначенных для работы с коррозионноактивными веществами и/или при высоких температурах, применяют легированные стали. Согласно ГОСТ 5632–72 в зависимо-

сти от основных свойств эти стали подразделяют на три группы:

− коррозионностойкие (нержавеющие) стали, обладающие стойкостью против химической и электрохимической коррозии (08Х13, 12Х18Н10Т, 14Х17Н2);

− жаростойкие (окалиностойкие) стали, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550 °С и работающие в слабонагруженном состоянии (15Х25Т, 20Х23Н13 и др.);

− жаропрочные стали, работающие при высоких температурах в нагруженном состоянии и обладающие при этом достаточной окалиностойкостью (20Х13, 20Х13Н18 и др.).

Эффективная защита технологического оборудования, сооружений от химической коррозии осуществляется за счёт: a) применения конструкционных материалов с коррозионной

проницаемостью не более 0,1 мм/год; б) использования антикоррозионных покрытий (иногда аппараты

изготавливают двухслойными: внутренний слой – из высоколегированной стали, а наружный – из низколегированной); в) выбора оптимальных режимов эксплуатации и конструкции

элементов химических аппаратов, исключающих возможность местных перегревов, возникновения застойных зон, которые могут усилить коррозию; г) применения для замедления скорости коррозии специальных ингибиторов (так, скорость растворения стали в соляной кислоте в

присутствии ингибитора ПБ4 снижается в 20…300 раз). Для борьбы с электрохимической коррозией аппаратов, емкостей, подземных трубопроводов применяются методы катодной и протек-

торной защиты.

Сосуд - герметически закрытая емкость, предназначенная для ведения химических, тепловых и других технологических процессов, а также для хранения и транспортирования газообразных, жидких и других веществ. Границей сосуда являются входные и выходные штуцера.

Сосуды, работающие под давлением, являются оборудованием повышенной опасности. Требования к их проектированию, устройству, наладке, монтажу, ремонту и эксплуатации определены правилами Госгортехнадзора России . Правила распространяются на:

§ сосуды, работающие под давлением воды, или другой жидкости с температурой, превышающей температуру кипения при давлении 0,07 МПа без учета гидростатического давления;

§ сосуды, работающие под давлением пара или газа свыше 0,07 МПа;

§ баллоны, предназначенные для транспортирования и хранения сжатых, сжиженных и растворенных газов под давлением свыше 0,07 МПа;

§ цистерны и бочки для транспортирования и хранения сжиженных газов, давление паров которых при температуре до 50 °С превышает 0,07 МПа;

§ цистерны и сосуды для транспортирования или хранения сжатых, сжиженных газов, жидкостей и сыпучих тел, в которых давление выше 0,07 МПа создается периодически для их опорожнения;

§ барокамеры.

Для управления работой и обеспечения безопасных условий эксплуатации сосуды в зависимости от их назначения снабжаются: специальной запорной или запорно-регулирующей арматурой; приборами для измерения давления; прибор

Каждому работнику необходимо знать и помнить, что электрический ток может представлять из себя скрытый вид опасности. В момент прикосновения к проводящим ток частям оборудования, а также оголенным проводам, которые находятся под напряжением, работник или другой человек зачастую получает электротравму (это частичное поражение организма электрическим током) или электрический удар (это поражение в целом организма, может сопровождаться параличом дыхания или сердца, или одновременно в случае паралича нервной системы, а также мышц грудной клетки, желудочков сердца).
Чтобы избежать поражения электрическим током, всегда необходимо соблюдать ниже перечисленные правила:
– нельзя прикасаться к арматуре, относящейся к общему освещению, электрическим проводам, а также к неизолированным, не огражденным токопроводящим частям электрических приборов, аппаратов и устройств (переключателей, розеток, патронов, предохранителей, рубильников и других);
– если вдруг обнаружилось нарушение изоляции электропроводов или открытых токопроводящих частей электрооборудования, а также нарушение заземления оборудования, то необходимо незамедлительно сообщить администрации об этом.
– нельзя наступать ногами на электрические переносные провода, которые лежат на полу. Нельзя снимать ограждения, защитные кожухи с токопроводящих частей приборов, оборудования, аппаратов, нельзя открывать двери щитов (электрораспределительных шкафов), нельзя класть в них какие-либо предметы;
– запрещается в складских, конторских помещениях использовать переносные электронагревательные приборы (электроплитки, электрокипятильники, электрочайники и прочее);
–нельзя самостоятельно производить ремонт приборов, электрооборудования, светильников, аппаратов, замену электроламп, электрозащиту (каких-либо плавких предохранителей), а также чистку электросветильников. Подобные работы всегда должны выполняться только специалистами–электриками.
– в случае прерывания подачи электроэнергии или ухода с рабочего места, даже на короткое время, необходимо обязательно выключать электрическое оборудование, на котором выполняется порученная работа.
В органе государственного управления также предусмотрены меры для предупреждения электротравматизма: сеть освещения и электропитание розеток имеет отключающие устройства в форме автоматических отключателей, а также предохранителей, электрощитки (шкафные настенные) всегда имеют защитные кожухи. Все электроприемники, силовые, осветительные цепи и корпуса электрооборудования заземляются. Всегда должны быть вывешены предупреждающие об опасности знаки.