Искусственные кристаллы и их использование в современной технике. Применение кристаллов в науке и технике

Применение кристаллов в науке и технике

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся не-сколькими примерами.

Самый твердый и самый редкий из природных минералов - ал-маз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение.

Благодаря своей исключительной твердости алмаз играет гро-мадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращаю-щийся стальной диск, на краях которого сделаны надрезы или за-рубки. Мелкий порошок алмаза, смешанный с каким-нибудь клей-ким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.

В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, за-каленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее от-ветственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазарево-синий сапфир - это родные братья, это вообще один и тот же мине-рал - корунд, окись алюминия А12О3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись ти-тана - в сапфир. Есть корунды и других цветов. Есть у них ещё со-всем скромный, невзрачный брат: бурый, непрозрачный, мелкий ко-рунд - наждак, которым чистят металл, из которого делают наждач-ную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Ко-рундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных руби-нах. На полупроводниковых заводах тончайшие схемы рисуют ру-биновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных воло-кон, из капрона, из нейлона.

Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц.

Мощный луч лазера громадный мощностью. Он легко прожига-ет листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых спла-вах, алмазе. Эти функции выполняет твердый лазер, где использует-ся рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные ла-зеры на арсениде галлия.

Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для опти-ческих приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон - все это разновидно-сти кварца. Мелкие зернышки кварца образуют песок. А самая кра-сивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачно-го кварца делают линзы, призмы и др. детали оптических приборов.

Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это - пьезоэлектрический эффект в кристал-лах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезирован-ные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие.

Пьезоэлектрические кристаллы широко применяются для вос-произведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигате-лей при взрыве в них горячих газов.

Эдектрооптическая промышленность - это промышленность кристаллов, не имеющих центра симметрии. Эта промышленность очень велика и разнообразна, на её заводах выращивают и обраба-тывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

В технике также нашел своё применение поликристаллический материал поляроид.

Поляроид - это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики распо-ложены параллельно друг другу, поэтому все они одинаково поляри-зуют свет, проходящий через пленку.

Поляроидные пленки применяются в поляроидных очках. По-ляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно прихо-дится смотреть на ослепительное отражение солнечных лучей от за-леденевшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомо-бильных фонарей сделать из поляроида, причем повернуть оба поля-роида так, чтобы их оптические оси были смещены, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.
Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.
Кристаллы используются также в некоторых мазерах для усиления волн СВЧ - диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Живя на Земле, сложенной кристаллическими породами, мы, безусловно, никак не можем отвлечься от проблемы кристалличности: мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы на заводах, выращиваем их в лабораториях, широко применяем в технике и науке, едим кристаллы, лечимся ими… Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. По мере совершенствования методов исследования кристалличными оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза, витамины, мелиновая оболочка нервов - это кристаллы. Долгий путь поисков и открытий, от измерения внешней формы кристаллов в глубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

Кристаллы – это красиво, можно сказать чудо какое-то, они притягивают к себе; говорят же «кристальной души человек» о том, в ком чистая душа. Кристальная – значит, сияющая светом, как алмаз … И если говорить о кристаллах с философским настроем, то можно сказать, что это материал, который является промежуточным звеном между живой и неживой материей. Кристаллы могут зарождаться, стареть, разрушаться. Кристалл, когда растет на затравке (на зародыше), наследует дефекты этого самого зародыша. Вообще можно привести множество примеров, настраивающих на такой философский лад, хотя конечно здесь много от лукавого… Например, по телевидению теперь можно услышать о непосредственной связи степени упорядоченности молекул воды со словом, с музыкой и о том, что вода изменяется в зависимости от мыслей, от состояния здоровья наблюдателя. Я не воспринимаю этого всерьез. Вообще-то, шарлатанства и спекуляций около науки много. А молитва опосредована, действует через Духа Святаго и не надо смешивать научный подход и духовные вещи.

Но если говорить совсем серьезно, сейчас пожалуй нельзя назвать ни одну дисциплину, ни одну область науки и техники, которая бы обходилась без кристаллов. Когда я работала, ко мне валом валили медики, показывали почечные камни пациентов: их интересовали среды, в которых кристаллообразование произошло. И фармацевтов много побывало, ведь таблетки – это спрессованные кристаллы. Усвоение, растворение таблеток зависит от того, какими гранями покрыты эти микрокристаллики. Витамины, миелиновая оболочка нервов, белки, и вирусы – это все кристаллы. И наши консультации приносили большое удовлетворение, отвечая на возникающие вопросы….

Кристалл чудодейственен своими свойствами, он выполняет самые разные функции. Эти свойства заложены в его строении, которое имеет решетчатую трехмерную структуру.

Как пример использования кристаллов можно взять кристалл кварца, который используется в телефонных трубках. Если на пластинку из кварца воздействовать механически, то в ней в соответствующем направлении возникнет электрический заряд. В трубке микрофона кварц преобразует механические колебания воздуха, вызванные говорящим, в электрические. Электрические колебания в трубке Вашего абонента преобразуются в колебательные, и, соответственно, он слышит речь.

Будучи решетчатым, кристалл ограняется и каждая грань, как личность, своеобразна. Если грань плотно упакована в решетке материальными частицами (атомами или молекулами), то это очень медленно растущая грань. Например, алмаз. У него грани имеют форму октаэдра, они очень плотно упакованы атомами углерода, и отличаются в силу этого и блеском, и прочностью.

Кристаллография – наука не новая. У её истоков стоит М. В. Ломоносов. А вот выращивание искусственных кристаллов дело более позднее. Популярная книга Шубникова «Образование кристаллов» вышла в 1947 году. Эта научная практика выросла из минералогии, науки о кристаллах и аморфных телах. Выращивание кристаллов стало возможным благодаря изучению данных минералогии о кристаллообразовании в природных условиях. Изучая природу кристаллов, определяли состав, из которого они выросли и условия их роста. И теперь эти процессы имитируют, получая кристаллы с заданными свойствами. В деле получения кристаллов принимают участие химики и физики. Если первые разрабатывают технологию роста, то вторые определяют их свойства. Можно ли искусственные кристаллы отличить от природных? Вот вопрос. Ну, например, искусственный алмаз до сих пор уступает природному по качеству, в том числе и по блеску. Искусственные алмазы не вызывают ювелирной радости, но для использования в технике они вполне подходят, выступают в этом смысле на равных с природными. Опять же, нахрапистые ростовики (так называют химиков, выращивающих искусственные кристаллы) научились выращивать тончайшие кристаллические иглы, обладающие чрезвычайно высокой прочностью. Это достигается манипулированием химизмом среды, температурой, давлением, воздействием некоторых других дополнительных условий. И это уже целое искусство, творчество, мастерство – тут точные науки не помогут, они в этой области работают плохо. Еще покойный академик Николай Васильевич Белов говорил, что искусством выращивать кристалл обладает тот специалист, который тонко чувствует кристалл.


Применения кристаллов в промышленности так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами. Применения кристаллов в промышленности так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.


Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.


Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.


Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и лазарево-синий сапфир - это родные братья, это вообще один и тот же минерал - корунд, окись алюминия А1 2 О 3. Разница в цвете возникла из-за очень малых примесей в окиси алюминия: ничтожная добавка хрома превращает бесцветный корунд в кроваво-красный рубин, окись титана - в сапфир. Есть корунды и других цветов. Есть у них ещё совсем скромный, невзрачный брат: бурый, непрозрачный, мелкий корунд - наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.


Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.


Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ), чудесный прибор наших дней. В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц. Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия.


Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др. Сапфир прозрачен, поэтому из него делают пластины для оптических приборов. Основная масса кристаллов сапфира идет в полупроводниковую промышленность. Кремень, аметист, яшма, опал, халцедон все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.


Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный. Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.


Кристаллы используются также в некоторых мазерах для усиления волн СВЧ - диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Фетисов Николай

Окружающий нас мир состоит из кристаллов, можно сказать, что мы живем в мире кристаллов. Жилые здания и промышленные сооружения, самолеты и ракеты, теплоходы и тепловозы, горные породы и минералы слагаются из кристаллов. Мы едим кристаллы, лечимся ими и частично состоим из кристаллов.

Так что такое кристаллы? Какими свойствами они обладают? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали меня, и я постарался найти на них ответы.

Скачать:

Предварительный просмотр:

11 НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ КУЗНЕЦКОГО РАЙОНА «ОТКРЫТЫЙ МИР»

СЕКЦИЯ ФИЗИКИ

Основные области применения искусственных кристаллов

Выполнил ученик 8 класса

Фетисов Николай

Руководитель Сизоченко А.И.,

учитель физики

Муниципальное общеобразовательное

Учреждение

«Основная общеобразовательная

Школа №24»

г. Новокузнецк, 2014 г

Введение……………………………………………………… 2

1. Основная часть

1.1. Понятие кристалл………………...………..……..4

1.2. Монокристаллы и поликристаллы........................4

1.3. Методы выращивания кристаллов………...….…5

1.4. Применение кристаллов…………………..…...…7

2. Практическая часть

2.1. Выращивание кристаллов в домашних

Условиях………………………………………...9

3. Заключение…………………………………………….…11

Библиография..………………………………………………...13

Приложения………………………….……………………..14-15

Введение

Словно волшебный скульптор,

Светлые грани кристаллов

Лепит бесцветный раствор.

Н.А.Морозов

Окружающий нас мир состоит из кристаллов, можно сказать, что мы живем в мире кристаллов. Жилые здания и промышленные сооружения, самолеты и ракеты, теплоходы и тепловозы, горные породы и минералы слагаются из кристаллов. Мы едим кристаллы, лечимся ими и частично состоим из кристаллов.

Кристаллы это вещества, в которых мельчайшие частицы “упакованы” в определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают разнообразную геометрическую форму.

Высказывание академика А.Е. Ферсмана «Почти весь мир кристалличен. В мире царит кристалл и его твердые прямолинейные законы» согласуется с научным интересом ученых всего мира к данному объекту исследования.

Современная промышленность не может обойтись без самых разнообразных кристаллов. Они используются в часах, транзисторных приемниках, вычислительных машинах, лазерах и многом другом. Великая лаборатория - природа - уже не может удовлетворить спрос развивающейся техники, и вот на специальных фабриках выращивают искусственные кристаллы: маленькие, почти незаметные, и большие - массой в несколько килограммов.

Люди научились получать искусственно очень многие драгоценные камни. Например, подшипники, для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют - фианит. Фианиты на глаз трудно отличить от алмазов - так красиво они играют на свету.

Так что такое кристаллы? Какими свойствами они обладают? Как растут кристаллы? Как и где они применяются в настоящее время и каковы перспективы их применения в будущем? Вот эти вопросы заинтересовали меня, и я постарался найти на них ответы.

Моя работа является исследовательской, так как при её реализации используются знания нескольких учебных предметов: физики, химии, биологии, информатики. В результате деятельности мною была создана презентация «Кристаллы и их применение», которую можно использовать на уроках физики и химии в качестве наглядного пособия, и выращенные кристаллы из медного купороса и поваренной соли.

Цель:

Определить основные области применения искусственных кристаллов и проверить опытным путём возможность роста кристаллов поваренной соли и медного купороса без применения специальной техники.

Для достижения поставленной цели передо мной встали следующие

задачи:

  • Собрать материал о кристаллах и их свойствах из литературных и интернет источников.
  • Провести опыты по выращиванию кристаллов медного купороса и поваренной соли.
  • Систематизировать материал о кристаллах: применение искусственных кристаллов и методы их выращивания.
  • Создать презентацию «Кристаллы и их применение» для учебных целей.
  1. Основная часть
  1. Понятие кристалл

Кристаллом (от греч. krystallos – «прозрачный лед») вначале называли прозрачный кварц (горный хрусталь), встречавшийся в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится. Первоначально главную особенность кристалла видели в его прозрачности, и это слово употребляли в применении ко всем прозрачным природным твердым телам. Позднее стали изготавливать стекло, не уступавшее в блеске и прозрачности природным веществам. Предметы из такого стекла тоже называли «кристальными». Еще и сегодня стекло особой прозрачности называется хрустальным, «магический» шар гадалок – хрустальным шаром.

Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце XVII в. было подмечено, что имеется определенная симметрия в их расположении и установлено, что некоторые непрозрачные минералы имеют естественную правильную огранку. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов, кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку.

В оружейной палате есть одежда и короны русских царей, сплошь усыпанные кристаллами - самоцветами - аметистами. В церквах аметистами украшали иконы и алтари.

Самые знаменитые кристаллы - алмазы, которые после огранки превращаются в бриллианты. Разгадать тайну этих камней люди пытались многие века и когда установили, что алмаз - это разновидность углерода никто не поверил.

Решающий опыт провел в 1772 году французский химик Лавуазье. В природе алмазы образуются в недрах земли при очень высоких температурах и давлениях. Создать в лаборатории условия, при которых из графита можно получить алмаз, ученые смогли лишь спустя 200 лет. Сейчас производятся десятки тонн искусственных алмазов. Среди них есть алмазы и для ювелирных целей, однако основная их масса идет на изготовления разнообразных инструментов.

  1. Монокристаллы и поликристаллы

Кристаллические тела могут быть монокристаллами и поликристаллами. Монокристаллом называют одиночный кристалл, имеющий макроскопическую упорядоченную кристаллическую решётку. Они обладают геометрически правильной внешней формой, но этот признак не является обязательным.

Поликристаллы, это сросшиеся друг с другом хаотически ориентированные маленькие кристаллы - кристаллиты.

  1. Методы выращивания кристаллов

В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе – из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350–450 о C и давлении 140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия, расплавляемого при температуре 2050 о C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи.

Первым монокристаллом, полученным в лаборатории, был рубин. Для получения рубина накаливалась смесь безводного глинозема, содержащего большую или меньшую примесь едкого калия с фтористым барием и двухромокалиевой солью. Последняя прибавляется для того, чтобы вызвать окраску рубина, и берется в незначительном количестве окись алюминия. Смесь помещается в тигель из глины и накаливается (от 100 часов до 8 суток) в отражательных печах при температуре до 1500 о С. По окончании опыта в тигле оказывается кристаллическая масса, причем стенки покрыты кристаллами рубина прекрасного розового цвета.

Второй распространенный метод выращивания синтетических кристаллов драгоценных камней – способ Чохральского. Он заключается в следующем: расплав вещества, из которого предполагается кристаллизовать камни, помещают в огнеупорный тигель из тугоплавкого металла (платины, родия, иридия, молибдена, или вольфрама) и нагревают в высокочастотном индукторе. В расплав на вытяжном валу опускают затравку из материала будущего кристалла, и на ней наращивается синтетический материал до нужной толщины. Вал с затравкой постепенно вытягивают вверх со скоростью 1- 50 мм/ч с одновременным выращиванием при частоте вращения 30-150 оборотов/мин. Вращают вал, чтобы выровнять температуру расплава и обеспечить равномерное распределение примесей. Диаметр кристаллов до 50 мм, длина до 1 м. Методом Чохральского выращивают синтетический корунд, шпинель, гранаты и др. искусственные камни.

Кристаллы могут расти так же при конденсации паров – так получаются снежинки узоры на холодном стекле. При вытеснении металлов из растворов солей с помощью более активных металлов так же образуются кристаллы. Например, в раствор медного купороса опустить железный гвоздь, он покроется красным слоем меди. Но образовавшиеся кристаллы меди настолько мелки, что их можно разглядеть только под микроскопом. На поверхности гвоздя медь выделяется очень быстро, поэтому кристаллы ее слишком мелкие. Но если процесс замедлить, кристаллы получатся большими. Для этого медный купорос надо засыпать толстым слоем поваренной соли, положить на него кружок фильтровальной бумаги, а сверху – железную пластинку диаметром чуть поменьше. Осталось налить в сосуд насыщенный раствор поваренной соли. Медный купорос начнет медленно растворяться в рассоле. Ионы меди (в виде комплексных анионов зеленого цвета) будут очень медленно, в течение многих дней, диффундировать вверх; за процессом можно наблюдать по движению окрашенной границы. Достигнув железной пластинки, ионы меди восстанавливаются до нейтральных атомов. Но так как процесс этот происходит очень медленно, атомы меди выстраиваются в красивые блестящие кристаллы. Иногда эти кристаллы образуют разветвления – дендриты.

  1. Применение кристаллов.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах «на счастье» и «своих камнях», соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита.

Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков , изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов.

Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи.

Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.

Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.

Искусственные кристаллы. С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До ХХ в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры , обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды , а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов .

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В природе часто встречаются твёрдые тела, имеющие форму правильных многогранников. Такие тела назвали кристаллами. Изучение физических свойств кристаллов показало, что геометрически правильная форма – не главная их особенность.

Полностью согласуется с неугасающим научным интересом учёных всего мира и всех областей знания к данному объекту исследования. В конце 60-х годов прошлого века начался серьёзный научный прорыв в области жидких кристаллов , породивший “индикаторную революцию” по замене стрелочных механизмов на средства визуального отображения информации. Позже в науку вошло понятие биологический кристалл (ДНК, вирусы и т. д.), а в 80-х годах ХХ века – фотонный кристалл.

  1. Практическая часть
  1. Выращивание кристаллов в домашних условиях

Выращивание кристаллов – процесс очень интересный, но достаточно длительный и кропотливый.

Полезно знать, какие процессы управляют его ростом; почему разные вещества образуют кристаллы различной формы, а некоторые их вовсе не образуют; что надо сделать, чтобы они получились большими и красивыми.

На эти вопросы я постарался найти ответы в своей работе.

Если кристаллизация идёт очень медленно, получается один большой кристалл (или монокристалл), если быстро – то множество мелких.

Выращивание кристаллов в домашних условиях я производил разными способами.

Способ 1 . Охлаждение насыщенного раствора медного купороса. С понижением температуры растворимость веществ уменьшается, и они выпадают в осадок. Сначала в растворе и на стенках сосуда появляются крошечные кристаллы-зародыши. Когда охлаждение медленное, а в растворе нет твёрдых примесей, зародышей образуется много, и постепенно они превращаются в красивые кристаллики правильной формы. При быстром охлаждении возникает много мелких кристалликов, почти никакой из них не имеет правильную форму, ведь их растёт множество, и они мешают друг другу.

Для того чтобы вырастить кристалл из медного купороса я сделал перенасыщенный раствор:

1. Для этого я взял тёплую воду, растворил в ней купорос и подсыпал его до тех пор, пока он не перестал растворяться.

2. Перелил через фильтр (марлю) в другую чистую ёмкость. Тару обдал кипятком, чтобы не допустить быстрой кристаллизации раствора на грязных стенках.

3. Подготовил затравку.

4. Привязал её к нитке, опустил её в раствор.

Чтобы кристаллик равномерно разрастался со всех сторон, затравку (маленький кристаллик) лучше в подвешенном состоянии держать в растворе. Для этого я сделал перемычку из стеклянной палочки. Кстати, желательно брать нитку гладкую, тоненькую, можно шёлковую, чтобы на ней не образовывались ненужные маленькие кристаллики. Далее свой раствор я поставил в тёплое место. Очень важно медленное остывание (чтобы получить крупный кристалл). Кристаллизацию можно будет увидеть уже через несколько часов. Периодически нужно менять или обновлять насыщенный раствор, а также счищать мелкие кристаллики с нитки. (Приложение 1)

Способ 2 - постепенное удаление воды из насыщенного раствора.

В этом случае, чем медленнее удаляется вода, тем лучше получается результат. Я оставил открытым сосуд с раствором поваренной соли (пищевая соль) при комнатной температуре на 14 дней, накрыв его листом бумаги, - вода при этом испарялась медленно, и пыль в раствор не попадала. Растущий кристаллик подвесил в насыщенном растворе на тонкой прочной нитке. Кристалл получился большой, но бесформенный – аморфный. (Приложение 1)

Выращивание кристаллов – процесс занимательный, но требующий бережного и осторожного отношения к своей работе. Теоретически размер кристалла, который можно вырастить в домашних условиях таким способом, неограничен. Известны случаи, когда энтузиасты получали кристаллы такой величины, что поднять их могли только с помощью товарищей.

Но, к сожалению, есть некоторые особенности их хранения. Например, если кристаллик квасцов оставить открытым в сухом воздухе, он, постепенно теряя содержащуюся в нём воду, превратится в невзрачный серый порошок. Чтобы предохранить его от разрушения, можно покрыть бесцветным лаком. Медный купорос и поваренная соль – более стойки и с ними смело можно работать.

В прошлом году в 7 классе на уроке химии при изучении темы «Явления происходящие с веществами» мы выращивали кристаллы, многим этот опыт не удался. В этом году я подсказал ребятам из 7 класса как правильно справиться с этим задание и вот что у них получилось (см. Приложение 2).

Заключение

Все физические свойства, благодаря которым кристаллы так широко применяются, зависят от их строения – их пространственной решётки.

Наряду с твёрдотельными кристаллами в настоящее время широко применяются жидкие кристаллы, а в скором будущем мы будем пользоваться приборами, построенными на фотонных кристаллах.

Я отобрал наиболее приемлемый способ для выращивания кристаллов в домашних условиях и вырастил кристаллы соли и медного купороса. По мере роста кристаллов проводил наблюдения, фиксировал изменения.

Кристаллы – это красиво, можно сказать чудо какое-то, они притягивают к себе; говорят же "кристальной души человек" о том, в ком чистая душа. Кристальная – значит, сияющая светом, как алмаз. И, если говорить о кристаллах с философским настроем, то можно сказать, что это материал, который является промежуточным звеном между живой и неживой материей. Кристаллы могут зарождаться, стареть, разрушаться. Кристалл, когда растет на затравке (на зародыше), наследует дефекты этого самого зародыша. Но если говорить совсем серьезно, сейчас, пожалуй, нельзя назвать ни одну дисциплину, ни одну область науки и техники, которая бы обходилась без кристаллов. Медиков интересуют среды, в которых происходит кристаллообразование почечных камней, а фармацевтов таблетки – это спрессованные кристаллы. Усвоение, растворение таблеток зависит от того, какими гранями покрыты эти микрокристаллики. Витамины, миелиновая оболочка нервов, белки, и вирусы – это все кристаллы.

Кристалл чудодейственен своими свойствами, он выполняет самые разные функции. Эти свойства заложены в его строении, которое имеет решетчатую трехмерную структуру. Кристаллография – наука не новая. У её истоков стоит М. В. Ломоносов. Выращивание кристаллов стало возможным благодаря изучению данных минералогии о кристаллообразовании в природных условиях. Изучая природу кристаллов, определяли состав, из которого они выросли и условия их роста. И теперь эти процессы имитируют, получая кристаллы с заданными свойствами. В деле получения кристаллов принимают участие химики и физики. Если первые разрабатывают технологию роста, то вторые определяют их свойства. Можно ли искусственные кристаллы отличить от природных? Например, искусственный алмаз до сих пор уступает природному по качеству, в том числе и по блеску. Искусственные алмазы не вызывают ювелирной радости, но для использования в технике они вполне подходят, выступают в этом смысле на равных с природными. Опять же, нахрапистые ростовики (так называют химиков, выращивающих искусственные кристаллы) научились выращивать тончайшие кристаллические иглы, обладающие чрезвычайно высокой прочностью. Это достигается манипулированием химизмом среды, температурой, давлением, воздействием некоторых других дополнительных условий. И это уже целое искусство, творчество, мастерство – тут точные науки не помогут.

Тема “Кристаллы” актуальна, и если в неё вникать и вникать глубже, то она будет интересна каждому, даст ответы на многие вопросы, а самое главное – безграничное применение кристаллов. Кристаллы загадочны по своей сущности и настолько неординарны, что в моей работе я рассказал лишь малую часть того, что известно о кристаллах и их применении в настоящее время. Может быть, что кристаллическое состояние вещества – это та ступенька, которая объединила неорганический мир с миром живой материи. Будущее новейших технологий принадлежит кристаллам и кристаллическим агрегатам!

На основании проведенного исследования я пришел к следующим выводам :

  • Искусственно выращенные кристаллы применяются в самых различных областях: медицине, радиотехнике, в машино-самолето строении, в оптике и во многих других.
  • Срок получения искусственных кристаллов значительно меньший, чем процесс их естественного образования. Что делает их более доступными в использовании.
  • В домашних условиях можно вырастить кристаллы даже за небольшой срок.

Библиография

  1. Химия. Вводный курс. 7 класс: учеб. Пособие / О.С. Габриелян, И.Г. Остроумов, А.К. Ахлебинин. – 6-е изд., М.: Дрофа, 2011.
  2. Химия. 7 класс: рабочая тетрадь к учебному пособию О.С. Габриеляна и др. «Химия. Вводный курс. 7 класс»/ О.С. Габриелян, Г.А. Шипарева. – 3-е изд., - М.: Дрофа, 2011.
  3. Ландау Л.Д., Китайгородский А.И. Физика для всех, Книга 2. Молекулы.- М.,1978.
  4. Энциклопедический словарь юного химика. / Сост. В.А. Крицман, В.В.Станцо.-М., 1982.
  5. Энциклопедия для детей. Том 4. Геология. / Сост. С.Т. Исмаилова.-М.,1995.
  6. Интернет-ресурсы:

http://www.krugosvet.ru – энциклопедия Кругосвет.

http://ru.wikipedia.org/ - энциклопедия Википедия.

http://www.kristallikov.net/page6.html - как вырастить кристалл.

Приложение 1.

Дневник наблюдений

Дата

Наблюдения

Фото

Соль

Медный купорос

Соль

Медный купарос

24.01.14.

До опускания затравки в раствор.

длина:5мм

ширина:5мм

Делаем петельку из проволоки, подвешиваем и опускаем в раствор.

27.01.14.

длина:11мм

ширина:7мм

длина:12мм

ширина:10мм

30.01.14.

длина:20мм

ширина:10мм

длина:18мм

ширина:13мм

3.02.14.

Образование кристалла вышло за границу раствора

длина:25мм

ширина:15мм

6.02.14.

Кристалл получился большой, но бесформенный

длина:30мм

ширина:20мм

Приложение 2

Кристаллы, выращенные семиклассниками

Подписи к слайдам:

Применение кристаллов
Украшения
Линзы
Подготовил затравку

Цель
: определить основные области применения искусственных кристаллов и проверить опытным путём возможность роста кристаллов поваренной соли и медного купороса без применения специальной техники.
Задачи:

Собрать материал о кристаллах и их свойствах.
Провести опыты по выращиванию кристаллов медного купороса и поваренной соли.
Систематизировать материал о кристаллах: физические свойства кристаллов и их применение.
Создать презентацию «Кристаллы и их применение».
2. Вытеснение металлов из растворов солей с помощью более активных металлов.
Пропустил раствор через фильтр
Спасибо за внимание
Основные области применения искусственных кристаллов
Выполнил ученик 8 класса
Фетисов Николай
Руководитель
Сизоченко
А.И. ,
Учитель физики
Муниципальное общеобразовательное
Учреждение
«Основная общеобразовательная
Школа №24»
г.Новокузнецк, 2014 г
Выводы
Искусственно выращенные кристаллы применяются в самых различных областях: медицине, радиотехнике, в
машино-самолето
строении, в оптике и во многих других.
Срок получения искусственных кристаллов значительно меньший, чем процесс их естественного образования. Что делает их более доступными в использовании.
В домашних условиях можно вырастить кристаллы даже за небольшой срок.
Методы выращивания кристаллов
Метод
Чохральского
- тигельный
метод:
расплав
вещества, из которого
предполагается кристаллизовать
камни, помещают в огнеупорный
тигель
из тугоплавкого металла (платины, родия,
иридия
, молибдена, или вольфрама) и нагревают в
высокочастотном
индукторе.
(Драгоценные камни: рубины)
Глиняный тигель
Выращивание кристаллов в домашних условиях
Способ 1
: Медленное охлаждение насыщенного раствора
Готовлю перенасыщенный раствор
Поликристаллы
Монокристаллы
Кристаллы, выращенные семиклассниками
Жидкие кристаллы
Кристаллы
- это твёрдые
вещества,

имеющие естественную
внешнюю форму
правильных симметричных многогранников
, основанную
на
их внутренней
структуре
Полупроводниковые диоды, транзисторы, солнечные батареи
Способ 2:
Постепенное удаление воды из насыщенного раствора

В
этом случае, чем медленнее удаляется вода, тем лучше получается результат.

Нужно оставить сосуд
с раствором поваренной
соли,
накрыв его листом бумаги, - вода при этом
испаряется
медленно, а пыль в раствор не
попадает.

Кристалл
получился большой, но бесформенный – аморфный.

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся не­сколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз.

Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.

В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.

Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные.

Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами. В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.

Новая жизнь рубина - это лазер или, как его называют в науке, оптический квантовый генератор (ОКГ). В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет.Для рубинового лазера наименьший диаметр светового пятна составляет примерно 0,7 мкм. Таким образом, можно создать чрезвычайно высокую плотность излучения. То есть максимально сконцентрировать энергию. Мощный луч лазера громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин, гранат с неодитом. В глазной хирургии применяется чаще всего неодиновые лазеры и лазеры на рубине. В наземных системах ближнего радиуса действия часто используются инжекционные лазеры на арсениде галлия. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Основная масса кристаллов сапфира идет в полупроводниковую промышленность.

Кремень, аметист, яшма, опал, халцедон - все это разновидности кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Кварцевое стекло обладает следующими качествами:

Высокая однородность и хорошее пропускание в ультрафиолетовом, видимом и ближнем инфракрасном диапазонах;

Отсутствие флюоресценции;

Низкий коэффициент теплового расширения;

Высокая устойчивость к механическим повреждениям и тепловому удару;

Низкая пузырность.

Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это - пьезоэлектрический эффект в кристаллах.

В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества: синетову соль, титанат бария, дигидрофосфаты калия и аммония (КДР и АДР) и многие другие.

Пьезоэлектрические кристаллы широко применяются для воспроизведения, записи и передачи звука.

Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.Пьезоэлектропластинками измеряют, например, давление в стволе артиллерийского орудия при выстреле, давление в момент взрыва бомбы, мгновенные давления в цилиндрах двигателей при взрыве в них горячих газов.

В технике также нашел своё применение поликристаллический материал поляроид.

Поляроид - это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества, двупреломляющего и поляризующего свет. Все кристаллики расположены параллельно друг другу, поэтому все они одинаково поляризуют свет, проходящий через пленку.

Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Жидкие кристаллы

Жи́дкие криста́ллы - вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.

Одно из важных направлений использования жидких кристаллов - термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы - сильно нагретые или холодные, неработающие - сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ - информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

В основе функционирования любой ЖКИ-панели лежит принцип изменения прозрачности (точнее, изменения поляризации проходящего света) у жидких кристаллов под воздействием электрического тока. В TFT-матрице слой жидких кристаллов управляется матрицей из микроскопических транзисторных аналоговых ключей, по одному ключу на каждый пиксел изображения, что позволяет добиться высокой скорости включения-выключения точек и повысить контрастность изображения. Поскольку жидкие кристаллы сами по себе не имеют цвета, в цветной панели имеется три слоя жидких кристаллов (либо специальная однослойная мозаичная структура) с соответствующими светофильтрами для каждой цветовой составляющей (красный, зеленый, синий). Жидкие кристаллы не могут сами светиться, поэтому для того, чтобы придать экрану привычный светящийся вид, за ЖКИ-панелью установлена специальная плоская лампа, подсвечивающая экран с обратной стороны. В результате пользователю кажется, что матрица "светится", как обычный экран ЭЛТ.

Виды травления: сухое (плазменное) и жидкостное (в жидких травителях, кислота HF). Преимущества сухого травления: возможность контроля анизотропии, возможность контроля селективности, слабая зависимость травления от адгезии защитной маски к подложке, не требует последующих операция промывки и сушки, экономичнее травления в жидких реактивах. Недостатки : повреждение поверхности материалов под действием бомбардировки ионами, электронами и фотонами. Сухое травление делится на:

Основные характеристики сухого травления: анизотропность – отношение скорости травления рабочего материала по нормали к поверхности пластины к скорости его бокового травления; селективность – отношение скоростей травления различных материалов (например рабочего и маски) при одинаковых условиях.

Ионное травление – процесс, при котором поверхностные слои материалов удаляются только в результате физического распыления. Распыление осуществляется энергетическими ионами газов, которые не вступают в химические реакции с обрабатываемым материалом (обычно ионы инертных газов). Если обрабатываемые материал помещен на электродах или держателях, соприкасающихся с плазмой разряда, то травление в таких условиях называют ионно-плазменным . Если же материал помещен в вакуумную зону обработки, отделенную от области плазмы, то травление называют ионно-лучевым.

В плазмохимическом травлении поверхностные слои материалов удаляются только в результате химических реакций между химически активными частицами и атомами травимого вещества. Если обрабатываемый материал находится в области плазмы разряда, то травление называют плазменным. В этом случае химические реакции травления на поверхности материала будут активироваться с помощью бомбардировки низкоэнергетических электронов и ионов, и также фотонной бомбардировки. Если же материал находится в вакуумной зоне обработки, обычно называемой реакционной зоной и отделенной от области плазмы, то травление производят химически активными частицами без активации электронной и ионной бомбардировками, а в ряде случаев и при отсутствии воздействия фотонов. Такое травление называют радикальным .

Плазма используется в основных трех процессах: для травления материалов, для напыления а поверхность материалов тонких пленок (других материалов), для легирования (имплантации) внутрь материала других частиц.

Современное применение плазменных технологий. Основной процесс в технологии фотолитографии (травление металла, plasma ashing (озоление), plasma de-scum(снятие резиста))! Также применяется в технологиях создания: NEMS, MEMS, микроэлектроника, наноэлектроника, гироскопы, акселерометры, травление полимеров, полимерные микроструктуры, керамические микроструктуры, технологии глубокого травления (с высоким аспектным соотношением: отношение между размером характерного элемента и глубиной травления).