Правила ядерной безопасности. Об утверждении и введении в действие федеральных норм и правил в области использования атомной энергии "правила ядерной безопасности реакторных установок атомных станций" Системы нормальной эксплуатации

ПРАВИЛА ЯДЕРНОЙ БЕЗОПАСНОСТИ ИМПУЛЬСНЫХ ИССЛЕДОВАТЕЛЬСКИХ ЯДЕРНЫХ РЕАКТОРОВ.

НП-048-03

Госатомнадзор России

Москва, 2003

Нормативный документ устанавливает требования к обеспечению ядерной безопасности при проектировании, сооружении, вводе в эксплуатацию и эксплуатации импульсных исследовательских ядерных реакторов.

Документ разработан в соответствии с законодательством Российской Федерации, с учетом требований федеральных норм и правил, а также документа IAEA Safety Requirements of the Research Reactors . Draft Safety Requirements to supersede SS 35-S1 and 35-S2, Status: Review CSS, Vienna 2003

Нормативный документ выпускается впервые. *)

Нормативный документ прошел правовую экспертизу Минюста России (письмо Минюста России от 21.01.2004 г. № 07/670-ЮД)

_____________

*) Нормативный документ разработан в Научно-техническом центре по ядерной и радиационной безопасности Госатомнадзора России (НТЦ ЯРБ) при участии Ковалева В.Ф., Маклакова В.В., Парамонова В.В. (НТЦ ЯРБ), Никольского Р.В., Морозова С.И. (Госатомнадзор России), Сысоева М.И. (ЦМТО Госатомнадзора России), Ефимова Е.Ф. (ДБЭЧС Минатома России), Болдина В.Ф. (НИИП), Виноградова А.В. (ОИЯИ, г. Дубна), Литицкого В.А. (ФГУП ГНЦ РФ «ФЭИ»), Остапчука В.П. ФГУП «Красная Звезда»), Хвостионова В.Е. (ФГУП РНЦ «Курчатовский институт».

При разработке рассмотрены и учтены предложения Госатомнадзора России, Минатома России, НИИП, ОИЯИ, ФГУП «Красная Звезда», ФГУП РНЦ «Курчатовский институт», ФГУП ГНЦ РФ «ФЭИ».

Перечень сокращений

ИИР - импульсный исследовательский ядерный реактор

ИИР АД - импульсный исследовательский ядерный реактор апериодического действия

ИИР ПД - импульсный исследовательский ядерный реактор периодического действия

СУЗ - системы управления и защиты

ТВС - тепловыделяющая сборка

УСБ - управляющие системы безопасности

УСНЭ - управляющие системы нормальной эксплуатации

Термины и определения *

_________

*В Правилах, наряду с терминами, включенными в настоящий раздел, используются термины, приведенные в федеральных нормах и правилах в области использования атомной энергии.

В целях настоящего документа используются следующие термины и определения.

1. Аварийная защита ИИР:

Функция безопасности, состоящая в аварийном останове реактора;

Комплекс систем безопасности, выполняющий функцию аварийной защиты.

2. Автокатализ цепной ядерной реакции деления - увеличение энерговыделения в импульсе мощности ИИР из-за изменений в активной зоне реактора, вносимых самой цепной ядерной реакцией деления.

3. Безопасное состояние ИИР - установленные проектом** подкритичность и состояние систем и оборудования ИИР, обеспечивающие безопасность ИИР при его эксплуатации в режиме временного останова.

__________

**В Правилах под термином «Проект» понимается совокупность документации, разработанной при проектировании, конструировании и сооружении ИИР, а также техническая документация, разработанная эксплуатирующей организацией в процессе эксплуатации ИИР.

4. Взвод рабочих органов СУЗ - изменение положения (состояния) рабочих органов , которое приводит к вводу положительной реактивности.

5. Глубокая подкритичность ИИР - подкритичность ИИР в режиме длительного останова, исключающая выход реактора в критическое состояние с учетом возможных отказов по общей причине.

6. Диагностика - функция контроля, целью которой является определение работоспособности диагностируемого объекта.

7. Импульсный исследовательский ядерный реактор - реактор, предназначенный для получения импульсов мощности при обеспечении надкритичности на мгновенных нейтронах.

8. Импульсный исследовательский ядерный реактор апериодического действия - реактор, в котором после инициирования импульса мощности надкритичность на мгновенных нейтронах гасится за счет обратной связи "мощность (температура) - реактивность".

9. Импульсный исследовательский ядерный реактор периодического действия - реактор, в котором импульс мощности с заданной периодичностью и амплитудой инициируется и гасится средствами воздействия на реактивность.

10. Канал контроля - совокупность датчика, линии передачи и средств обработки сигнала и (или) отображения информации, предназначенная для обеспечения контроля параметра в заданном проектом объеме.

11. Комплект аппаратуры аварийной защиты - аппаратура системы управления и защиты, выполняющая в заданном проектом объеме функции контроля состояния аварийной защиты и функции управления аварийной защитой реактора.

12. Контроль - часть функции управления, целью которой является оценка значения параметра или определение состояния (идентификация) контролируемого процесса или оборудования.

13. Модулятор реактивности - совокупность элементов СУЗ ИИР ПД, обеспечивающая периодическое изменение реактивности с заданной частотой и амплитудой.

14. Независимые системы (элементы) - системы (элементы), для которых отказ одной системы (элемента) не приводит к отказу другой системы (элемента).

15. Обращение с ядерными материалами - деятельность, связанная с перегрузкой, транспортированием, хранением и другими операциями с ядерными материалами.

16. Останов ИИР - перевод ИИР из критического (надкритического) состояния в подкритическое состояние с помощью рабочих органов СУЗ и при необходимости с помощью других технических средств воздействия на реактивность.

17. Подкритическое состояние - состояние реактора, характеризующееся значением эффективного коэффициента размножения нейтронов, меньшим единицы.

18. Пусковое устройство - совокупность элементов СУЗ ИИР АД, обеспечивающая быстрое увеличение реактивности с целью получения импульса мощности.

19. Рабочий орган СУЗ - используемое в СУЗ средство воздействия на реактивность, изменением положения (состояния) которого обеспечивается изменение реактивности.

По функциональному назначению рабочие органы СУЗ подразделяются на следующие:

Рабочие органы аварийной защиты;

Рабочие органы компенсации реактивности (компенсирующие органы);

Рабочие органы ручного и автоматического регулирования;

Рабочие органы пускового устройства ИИР АД;

Рабочие органы модулятора реактивности ИИР ПД.

20. Режим временного останова ИИР - режим эксплуатации ИИР, заключающийся в останове ИИР на определенный промежуток времени с целью проведения работ по техническому обслуживанию ИИР и подготовке экспериментальных исследований.

21. Режим длительного останова - режим эксплуатации ИИР, заключающийся в останове ИИР с целью проведения работ по консервации отдельных систем и оборудования и поддержанию работоспособности ИИР в течение времени, когда экспериментальные исследования на ИИР не планируются.

22. Режим окончательного останова - режим эксплуатации ИИР, заключающийся в останове ИИР для подготовки вывода из эксплуатации ИИР, включающий выгрузку из активной зоны ядерных материалов и их удаление с площадки ИИР.

23. Режим пуска и работа на мощности - режим эксплуатации ИИР, заключающийся в выводе на мощность ИИР с помощью рабочих органов СУЗ и проведении экспериментальных исследований с использованием нейтронов и ионизирующего излучения ИИР.

24. Связанные активные зоны - активные зоны многозонного ИИР АД, плотность потока нейтронов (мощность) каждой из которых влияет на пространственное распределение нейтронов в других активных зонах ИИР.

25. Система управления и защиты - совокупность элементов управляющих систем нормальной эксплуатации, защитных, управляющих и обеспечивающих систем безопасности, предназначенная для обеспечения безопасного протекания и прекращения цепной ядерной реакции деления.

26. Экспериментальное устройство ИИР - устройство, приспособление, предназначенное для проведения экспериментальных исследований на ИИР (петлевые каналы, каналы выведения излучения, ампулы и т.д.).

27. Ядерная авария на ИИР - авария на ИИР, вызванная:

Нарушением контроля и управления цепной ядерной реакцией деления в активной зоне реактора или превышением номинальных параметров импульса реактивности (мощности);

Возникновением критичности при перегрузке, транспортировании и хранении твэлов;

Нарушением теплоотвода от активной зоны и другими причинами, приводящими к повреждению твэлов.

28. Ядерная безопасность ИИР - свойство ИИР ограничивать вероятность и последствия ядерной аварии установленными пределами.

29. Ядерно-опасные работы на ИИР - работы на ИИР, которые могут привести к ядерной аварии.

1. Общие положения

1.1. Правила ядерной безопасности импульсных исследовательских ядерных реакторов (далее - Правила) устанавливают требования к применяемым в проекте ИИР техническим решениям, направленным на обеспечение ядерной безопасности ИИР, а также к организационно-техническим мероприятиям по обеспечению ядерной безопасности при эксплуатации с учетом назначения, нейтронно-физических характеристик и конструкционных особенностей ИИР.

1.2. Ядерная безопасность ИИР определяется техническим совершенством проекта ИИР, качеством изготовления, монтажа, наладки и испытаний элементов и систем, важных для безопасности, их надежностью при эксплуатации, диагностикой состояния оборудования, качеством и своевременностью проведения технического обслуживания и ремонта оборудования, организацией работ, квалификацией и дисциплиной работников (персонала).

1.3. Ядерная безопасность ИИР обеспечивается выполнением норм и правил безопасности и требований проекта ИИР, культурой безопасности, качеством и полнотой экспериментальных исследований нейтронно-физических характеристик при физическом и энергетическом пусках ИИР, системой организационно-технических мероприятий, минимизирующих вероятность и последствия ошибок персонала и отказов оборудования при эксплуатации ИИР в режиме пуска и работы на мощности и в других режимах.

1.4. Правила распространяются на все проектируемые, сооружаемые и эксплуатируемые ИИР независимо от их типа, за исключением электроядерных генераторов нейтронов, включающих в себя ИИР и источник нейтронов в виде ускорителя заряженных частиц и нейтронно-производящей мишени.

1.5. Порядок приведения эксплуатируемых ИИР в соответствие с требованиями Правил определяется в условиях действия лицензии на эксплуатацию ИИР.

2. Требования к проекту импульсных исследовательских ядерных реакторов, направленные на обеспечение ядерной безопасности

2.1. Общие требования

2.1.1. Системы и элементы ИИР, важные для безопасности, должны проектироваться с учетом возможных механических, тепловых, химических и прочих воздействий, возникающих как при нормальной эксплуатации, так и при нарушениях нормальной эксплуатации, включая проектные аварии, с учетом внешних воздействий природного и техногенного происхождения.

2.1.2. В проекте ИИР должны быть приведены и обоснованы:

Перечни методик и расчетных программ, используемых для расчетного прогнозирования нейтронно-физических характеристик и обоснования ядерной безопасности ИИР, область применения используемых программ и информация об их аттестации в установленном порядке;

Проектное количество генерируемых импульсов и их номинальное энерговыделение;

Эксплутационные пределы и условия, пределы и условия безопасной эксплуатации и другие пределы для всех контролируемых нейтронно-физических, теплогидравлических и прочих характеристик, влияющих на ядерную безопасность;

Перечни систем и элементов, работоспособность и характеристики которых проверяются на работающем или остановленном реакторе, с указанием состояния реактора и систем, важных для безопасности;

Приспособления, устройства, методики и периодичность проверок систем, важных для безопасности, на работоспособность и соответствие проектным характеристикам;

Порядок загрузки ядерного топлива в активную зону реактора и порядок выведения реактора в критическое состояние;

Перечень ядерно-опасных работ при эксплуатации ИИР и меры по обеспечению ядерной безопасности при их проведении;

Условия безопасного обращения с ядерными материалами;

Условия срабатывания систем безопасности и уровни внешних воздействий, превышение которых требует останова реактора;

Количественный анализ надежности, эффективности и быстродействия выполнения функций систем управления и защиты, в котором должно быть показано, что эти показатели удовлетворяют требованиям нормативных документов, регламентирующих такие показатели;

Анализ реакций управляющих и других систем, важных для безопасности, на внешние и внутренние воздействия, возможные отказы и неисправности и отказы основного оборудования реактора, доказывающие отсутствие опасных для реактора реакций, при этом должны быть выделены наиболее вероятные и опасные отказы, в том числе приводящие к самопроизвольному выходу реактора в критическое состояние и к ядерной аварии;

Оценка последствий проектных и запроектных аварий, при этом в числе запроектных аварий должна быть рассмотрена авария с расплавлением (разрушением) активной зоны;

Данные об объеме регистрации и хранении в устройстве типа "черный ящик" информации, позволяющей идентифицировать исходные события аварий, установить фактические алгоритмы работы систем, важных для безопасности, и действия оперативного персонала.

2.1.3. Используемые в проекте технические решения должны обеспечивать:

Возможность перевода реактора в безопасное состояние и в состояние глубокой подкритичности;

Отрицательный мощностной (температурный) коэффициент реактивности ИИР АД, достаточный для перевода реактора в подкритическое состояние на мгновенных нейтронах после инициирования импульса мощности, и последующий перевод в подкритическое состояние на запаздывающих нейтронах с помощью рабочих органов СУЗ;

Возможность проведения исследований одной из активных зон ИИР АД со связанными активными зонами при обеспечении безопасного состояния других связанных активных зон ИИР АД;

Безопасность ИИР при любой проектной аварии, вызванной любым из учитываемых в проекте исходных событий с наложением одного отказа любого активного элемента или пассивного элемента систем безопасности, имеющего механические движущиеся части, или одной ошибки персонала, влияющей на развитие ядерной аварии, или необнаруживаемых отказов не контролируемых при эксплуатации элементов, влияющих на развитие ядерной аварии;

Диагностику состояния реактора и систем, важных для безопасности;

Сохранность и работоспособность в условиях проектных и запроектных аварий технических средств, используемых для регистрации и хранения информации, необходимой для расследования аварии.

2.1.4. Проектом должны быть определены организационно-технические меры по исключению несанкционированного доступа к управляющим и другим системам, важным для безопасности.

2.1.5. Проектом должны быть предусмотрены средства для передачи информации во внешний и внутренний аварийные центры управления реактором в условиях запроектных аварий.

2.2. Системы нормальной эксплуатации

2.2.1. Активная зона и элементы ее конструкции

2.2.1.1. Конструкция реактора при нормальной эксплуатации и нарушениях нормальной эксплуатации, в том числе проектных авариях, должна исключать непредусмотренные изменения состава активной зоны, перемещения и (или) деформации и формоизменения элементов активной зоны и отражателя, вызывающие увеличение реактивности и (или) ухудшение условий теплоотвода, приводящие к повреждению твэлов сверх соответствующих пределов или препятствующие нормальному функционированию рабочих органов СУЗ.

2.2.1.2. Конструкция ТВС и твэлов при нормальной эксплуатации и нарушениях нормальной эксплуатации, включая проектные аварии, должна обеспечивать непревышение соответствующих пределов повреждения твэлов с учетом:

Проектного количества и номинальных параметров импульсов мощности реактора;

Физико-химического взаимодействия материалов активной зоны и теплоносителя;

Ударных и вибрационных воздействий, термоциклического нагружения, усталости и старения материалов;

Влияния примесей в теплоносителе и продуктов деления на коррозию оболочек твэлов;

Воздействия радиационных и других факторов, ухудшающих механические характеристики материалов активной зоны и целостность оболочек твэлов.

2.2.1.3. Конструкция активной зоны должна исключать автокатализ цепной ядерной реакции деления.

2.2.1.4. Активная зона и исполнительные механизмы СУЗ должны быть спроектированы так, чтобы исключались заклинивание, выброс рабочих органов СУЗ и их самопроизвольное расцепление с приводами СУЗ.

2.2.1.5. В проекте должен быть приведен анализ теплотехнической надежности активной зоны с обоснованием достаточности предусмотренных в проекте запасов непревышения пределов безопасной эксплуатации твэлов.

2.2.1.6. Характеристики ядерного топлива, расположение твэлов, ТВС, рабочих органов СУЗ и других устройств активной зоны должны исключать возможность возникновения локальной критичности и цепной ядерной реакции деления при разрушении (расплавлении) активной зоны.

2.2.1.7. Конструкция активной зоны и рабочих органов СУЗ должна позволять варьировать запас реактивности и величину энерговыделения в импульсе, ограничивая их максимальными значениями, установленными в паспорте эксплуатирующей организации на ИИР.

2.2.1.8. Проектом ИИР с растворным ядерным топливом должен быть предусмотрен порционный дистанционный залив активной зоны растворным ядерным топливом и наличие контроля за уровнем растворного ядерного топлива в активной зоне.

2.2.1.9. В случае использования на ИИР с растворным ядерным топливом системы сжигания продуктов радиолиза топливного раствора прочность корпуса реактора должна определяться с учетом повышения давления в корпусе при сжигании продуктов радиолиза.

2.2.1.10. В проекте должны быть определены:

Запасы реактивности на начало кампании для всех состояний активной зоны, предусмотренных проектом ИИР, с оценкой погрешности используемых расчетных методов и с учетом возможных технологических отклонений комплектующих элементов активной зоны;

Эффективности рабочих органов СУЗ, ТВС и экспериментальных устройств с учетом их интерференции;

Подкритичность реактора при взведенных рабочих органах аварийной защиты;

Безопасная подкритичность и глубокая подкритичность реактора;

Эффекты и коэффициенты обратных связей по реактивности, обеспечивающие гашение импульса мощности ИИР АД;

Возможные источники и последствия флуктуации реактивности;

Удельная пороговая энергия разрушения твэлов и максимально допустимое энерговыделение за импульс мощности.

2.2.1.11. Для ИИР с подвижной активной зоной, перемещаемой в бокс-отстойник (отстойную зону) на период временного или длительного останова, в проекте должны быть также определены:

Условия, позволяющие начать операции по перемещению активной зоны в бокс-отстойник (подкритичность ИИР, температурный режим элементов активной зоны, радиационная обстановка и т.д.);

Перечень и технология проведения подготовительных операций по приведению технологических систем, систем управления, транспортно-технологического оборудования в состояние готовности к перемещению активной зоны;

Условия хранения активной зоны в боксе-отстойнике и объем контроля за состоянием активной зоны в боксе-отстойнике;

Состояние технологических систем, систем управления и оборудования в реакторном зале до начала работ по перемещению активной зоны из бокса-отстойника на рабочее место;

Объем контроля работоспособности и параметров технологических систем, систем управления реактора после возращения активной зоны из бокса-отстойника на рабочее место в реакторном зале.

2.2.1.12. Запасы реактивности должны быть обоснованы и минимально достаточны для инициирования требуемого импульса мощности.

2.2.1.13. В проекте должно быть определено соответствие повреждения твэлов и активности теплоносителя первого контура по реперным радионуклидам с учетом эффективности систем очистки теплоносителя.

2.2.1.14. Для ИИР ПД должен быть выполнен анализ динамических процессов в активной зоне и определена граница устойчивости в координатах "средняя мощность - расход теплоносителя" и в координатах "возмущение реактивности - скорость возмущения реактивности". По результатам анализа устойчивости должна быть определена зона безопасной эксплуатации реактора.

2.2.1.15. Для ИИР с активной зоной без отражателя в проекте должны быть рассмотрены последствия уменьшения утечки нейтронов из активной зоны при приближении к ней персонала, экспериментальных устройств и других предметов, а также из-за разрушения строительных конструкций реакторного зала и (или) заполнения реакторного зала и активной зоны водой.

2.2.1.16. В проекте должны быть установлены показатели качества химического и радионуклидного составов теплоносителя, предусмотрены технические средства и организационные мероприятия по их поддержанию и контролю.

2.2.1.17. Проектом должны быть предусмотрены технические средства и методы контроля герметичности оболочек твэлов (ТВС) на остановленном и работающем реакторе, которые должны обеспечивать надежное и своевременное обнаружение негерметичных оболочек твэлов (ТВС).

2.2.1.18. Твэлы различного обогащения, выгорающие поглотители нейтронов, твэлы с выгорающим поглотителем нейтронов и твэлы, отличающиеся нуклидным составом, должны иметь четкую маркировку (отличительные знаки).

2.2.1.19. В проекте должна быть технически обоснована и обеспечена возможность выгрузки активной зоны и ее элементов после проектной аварии.

2.2.2. Управляющие системы нормальной эксплуатации

2.2.2.1. УСНЭ должны обеспечивать контроль состояния реактора и автоматическое и (или) дистанционное управление системами реактора с целью достижения и поддержания в заданном диапазоне нейтронно-физических и других характеристик и параметров реактора.

2.2.2.2. В проекте должны быть обоснованы и приведены перечни контролируемых параметров (характеристик) и сигналов о состоянии реактора и регулируемых параметров и управляющих сигналов.

2.2.2.3. В составе УСНЭ проектом должна быть предусмотрена часть СУЗ, обеспечивающих управление реактивностью (мощностью) при нормальной эксплуатации и нарушениях нормальной эксплуатации реактора. Указанная часть СУЗ должна включать:

Автоматические и (или) ручные регуляторы СУЗ, используемые для вывода реактора на требуемый стационарный уровень мощности и его нормального останова;

Компенсаторы реактивности, используемые для компенсации избыточного запаса реактивности реактора и выбора оптимального положения других рабочих органов СУЗ при выводе реактора на мощность;

Дополнительные технические средства, используемые для увеличения подкритичности реактора в случае, если суммарной эффективности рабочих органов СУЗ, включая рабочие органы регуляторов реактивности, компенсаторов реактивности и аварийной защиты, недостаточно для обеспечения подкритичности, соответствующей безопасному состоянию или состоянию глубокой подкритичности реактора с учетом возможного высвобождения реактивности;

Систему контроля положения и управления исполнительными механизмами рабочих органов СУЗ;

Систему, обеспечивающую генерирование импульсов мощности с помощью пускового устройства или модулятора реактивности;

Минимум два независимых между собой канала контроля плотности потока нейтронов с показывающими приборами, обеспечивающими контроль мощности реактора. При этом по меньшей мере в составе одного канала должна быть предусмотрена возможность записи изменения средней мощности реактора во времени;

Минимум два независимых между собой канала контроля скорости (периода) изменения плотности потока нейтронов с показывающими приборами;

Канал управления и контроля положения внешнего (пускового) источника нейтронов;

Каналы контроля и регистрации параметров импульсов мощности (формы и амплитуды импульса мощности или энерговыделения за импульс мощности);

Каналы контроля параметров технологических систем, важных для безопасности.

2.2.2.4. В случае разбиения диапазона контроля плотности потока нейтронов на несколько поддиапазонов должно быть предусмотрено перекрытие поддиапазонов не менее чем в пределах одной декады в единицах измерения плотности потока нейтронов и автоматическое переключение поддиапазонов.

2.2.2.5. Если каналы контроля плотности потока нейтронов не обеспечивают контроль потока нейтронов при загрузке (перегрузке) активной зоны, то реактор должен быть оборудован дополнительной системой контроля. Эта система может быть съемной, устанавливаемой на период загрузки и перегрузки активной зоны реактора, и должна включать в себя не менее двух независимых каналов контроля плотности потока нейтронов с показывающими приборами и записывающими устройствами.

2.2.2.6. В проекте должны быть определены и обоснованы:

Количество, функциональное распределение и эффективность рабочих органов СУЗ, а также скорости перемещения рабочих органов СУЗ на период физического пуска реактора при их калибровке и реализации импульса мощности;

Методы и условия испытаний, замены и вывода в ремонт рабочих органов СУЗ, их приводов, а также других средств воздействия на реактивность;

Аппаратурно-методическое и метрологическое обеспечение измерений эффектов реактивности и подкритичности с указанием рекомендуемых алгоритмов и физических констант кинетического уравнения реактора, количества и координат детекторов потока нейтронов, способов учета пространственно-временных эффектов, методик метрологической аттестации измерителей реактивности, при этом для измерителей реактивности должны быть предусмотрены средства проверки работоспособности и предупредительной сигнализации о неисправности.

2.2.2.7. УСНЭ должны обеспечивать:

Контроль уровня плотности потока нейтронов во всем диапазоне изменения мощности ИИР, начиная с уровня плотности потока нейтронов, обусловленного внешним (пусковым) источником нейтронов при отсутствии ядерного топлива в активной зоне;

Контроль реактивности (подкритичности);

Возможность ограничения вносимого пусковым устройством (модулятором реактивности) возмущения реактивности и скорости изменения реактивности значением, достаточным для получения номинальных параметров импульса мощности.

2.2.2.8. УСНЭ ИИР АД должны также обеспечивать контроль перед реализацией импульса мощности стартовой реактивности, других параметров и характеристик реактора, определяющих параметры импульса мощности.

2.2.2.9. УСНЭ ИИР ПД должны также обеспечивать:

Стабильность скорости и глубины модуляции реактивности;

Контроль частоты импульсов мощности;

Контроль вибрации узлов модулятора реактивности;

Контроль положения рабочих органов модулятора реактивности;

Контроль амплитуды каждого импульса реактивности (мощности).

2.2.2.10. УСНЭ ИИР с растворным ядерным топливом должны обеспечивать величину энерговыделения за импульс мощности, не приводящую к нарушению условий термостойкости растворного ядерного топлива.

2.2.2.11. УСНЭ каждой из связанных активных зон многозонного ИИР АД должны иметь самостоятельную систему контроля плотности потока нейтронов, регистрирующую в основном нейтроны только данной активной зоны.

2.2.2.12. Если рабочие органы аварийной защиты не взведены, УСНЭ должны исключать возможность перемещения (изменения положения) других средств воздействия на реактивность.

2.2.2.13. Рабочие органы ручного и автоматического регулирования и компенсирующие органы должны иметь указатели промежуточных положений и указатели конечных положений.

2.2.2.14. УСНЭ должны обеспечивать автоматический контроль окончательной готовности ИИР АД к импульсу мощности по программе контроля готовности, нейтрализующей возможные ошибки персонала.

2.2.2.15. При отказе канала регистрации и наблюдения формы импульса мощности, или канала регистрации энерговыделения в импульсе, или любого другого канала контроля параметров реактора, определенного в проекте, должно обеспечиваться получение сигналов на останов программы контроля готовности и приведение реактора в безопасное состояние. При этом должен формироваться сигнал об отказе такого канала.

2.2.2.16. Проектом должно предусматриваться наличие в пункте управления реактором световой и (или) звуковой сигнализации, информирующей персонал о состоянии реактора, включая:

Сигнализацию о достижении параметрами реактора уставок срабатывания аварийной защиты (аварийная сигнализация);

Сигнализацию о приближении параметров реактора к уставкам срабатывания аварийной защиты и нарушении нормального функционирования оборудования (предупредительная сигнализация);

Сигнализацию о положении рабочих органов СУЗ и наличии напряжения в цепях электропитания систем (элементов) ИИР, важных для безопасности (указательная сигнализация).

2.2.3. Система охлаждения активной зоны (первый контур)

2.2.3.1. Система охлаждения активной зоны (первый контур) при нормальной эксплуатации реактора должна обеспечивать теплоотвод от активной зоны без нарушения установленных пределов по температуре и скорости изменения температуры элементов активной зоны, экспериментальных устройств и теплоносителя.

2.2.3.2. В проекте должны быть определены и обоснованы:

Границы первого контура;

Надежность эксплуатации элементов и систем первого контура в течение назначенного срока эксплуатации с учетом воздействий, возможных при нормальной эксплуатации и нарушениях нормальной эксплуатации, включая проектные аварии;

Количество и характер воздействий и условия эксплуатации, учитываемые при определении проектного срока службы первого контура.

2.2.3.3. В проекте должно быть показано, что прочность корпуса и конструкций реактора обеспечивается как при нормальной эксплуатации, так и при нарушениях нормальной эксплуатации, включая проектные аварии, в течение всего назначенного срока эксплуатации первого контура.

2.2.3.4. Трубопроводы первого контура должны быть оборудованы устройствами контроля и предотвращения недопустимых перемещений и вибраций.

2.2.3.5. В случае использования теплообменного оборудования, служащего для передачи тепла от первого контура, проектом должен быть предусмотрен запас теплообменной поверхности, достаточный для компенсации ухудшения ее теплопередающих характеристик в процессе эксплуатации.

2.2.3.6. Циркуляционные насосы первого контура должны обладать инерцией, достаточной для обеспечения требуемого расхода теплоносителя при потере их энергопитания до момента, после которого естественная циркуляция теплоносителя или система аварийного расхолаживания обеспечат отвод остаточного тепловыделения без превышения эксплуатационных пределов повреждения твэлов.

2.2.3.7. Проектом должны быть предусмотрены:

Контроль параметров системы охлаждения активной зоны с обеспечением срабатывания предупредительной или аварийной сигнализации при достижении параметрами установленных пределов;

Автоматическая защита от недопустимого повышения или понижения давления в первом контуре при нормальной эксплуатации и нарушениях нормальной эксплуатации, включая проектные аварии;

Компенсация изменений объема теплоносителя, вызванных изменением температурных режимов элементов активной зоны;

в обнаружение потерь теплоносителя при течах и компенсация потерь теплоносителя при течах (с указанием максимального расхода течи, компенсируемого этими средствами);.

Защита первого контура от непредусмотренного дренирования теплоносителя;

Средства и способы обнаружения местонахождения и расхода течи теплоносителя первого контура;

Очистка теплоносителя от примесей, продуктов деления и коррозии.

2.2.3.8. Включение (выключение) циркуляционных насосов первого контура не должно выводить ИИР из подкритического состояния при любом исходном событии проектных аварий.

2.3. Системы безопасности

2.3.1. Аварийная защита

2.3.1.1. В составе СУЗ проектом должна быть предусмотрена защитная система безопасности, обеспечивающая аварийную защиту (аварийный останов) реактора.

2.3.1.2. Аварийная защита реактора должна иметь не менее двух независимых рабочих органов или групп рабочих органов (группу образуют рабочие органы, имеющие один общий, независимый от других привод).

2.3.1.3. Эффективность и быстродействие аварийной защиты без учета одного наиболее эффективного рабочего органа (группы рабочих органов) должны быть достаточными для перевода реактора в подкритическое состояние при нарушениях нормальной эксплуатации, включая проектные аварии, и ограничения энерговыделения в активной зоне уровнем, не приводящим к повреждению твэлов сверх пределов, установленных для проектных аварий.

2.3.1.4. Время срабатывания аварийной защиты для ИИР ПД, включая постоянную времени регистрирующей аппаратуры, время срабатывания исполнительных механизмов и время перемещения рабочих органов аварийной защиты, должно быть меньше периода генерации импульсов мощности.

2.3.1.5. Аварийная защита должна быть спроектирована таким образом, чтобы начавшееся защитное действие было выполнено полностью с учетом требований пункта 2.3.1.3 и обеспечивался контроль выполнения функции безопасности.

2.3.1.6. При появлении аварийного сигнала от любого канала аварийной защиты рабочие органы аварийной защиты должны приводиться в действие вне зависимости от их положения.

2.3.1.7. Рабочие органы аварийной защиты должны иметь указатели конечных положений и (или) состояний.

2.3.1.8. Аварийная защита должна выполнять свои функции (останов по сигналу аварийной защиты и при отказах в системе аварийной защиты) вне зависимости от состояния источников электроснабжения СУЗ.

2.3.1.9. При необходимости рабочие органы аварийной защиты могут использоваться для нормального (планового) останова реактора.

2.3.2. Система аварийного расхолаживания активной зоны

2.3.2.1. Для ИИР с принудительным охлаждением проектом должна быть предусмотрена защитная система безопасности, обеспечивающая аварийное расхолаживание активной зоны в случае отказа нормальной (штатной) системы охлаждения.

2.3.2.2. В проекте должны быть обоснованы перечень параметров и признаков состояния реактора, по которым вводится в действие система аварийного расхолаживания активной зоны, уставки и условия срабатывания системы для всех исходных событий проектных аварий.

2.3.2.3. Включение и выключение системы аварийного расхолаживания активной зоны не должны выводить реактор из подкритического состояния.

2.3.2.4. Проектом должна быть обеспечена возможность управления процессом аварийного расхолаживания активной зоны как из основного, так и из резервного пункта управления реактором.

2.3.3. Управляющие системы безопасности

2.3.3.1. УСБ должны осуществлять контроль состояния защитных систем безопасности и управление ими в процессе выполнения заданных функций.

2.3.3.2. Используемая в УСБ аппаратура аварийной защиты должна состоять, как минимум, из двух независимых комплектов.

2.3.3.3. Каждый комплект аппаратуры аварийной защиты должен быть спроектирован таким образом, чтобы во всем диапазоне изменения плотности потока нейтронов обеспечивалась защита не менее чем двумя независимыми каналами:

По плотности потока нейтронов;

По скорости изменения плотности потока нейтронов.

2.3.3.4. В случае необходимости разбиения диапазона измерения плотности потока нейтронов на несколько поддиапазонов в УСБ должно быть предусмотрено перекрытие поддиапазонов измерения не менее чем в пределах одной декады в единицах плотности потока нейтронов и автоматическое переключение поддиапазонов.

2.3.3.5. В УСБ должна быть предусмотрена возможность подключения записывающего устройства к каждому каналу контроля плотности потока нейтронов.

2.3.3.6. В проекте должен быть приведен и обоснован перечень параметров и признаков состояния реактора, при которых требуется срабатывание аварийной защиты. Аварийная защита должна срабатывать как минимум в следующих случаях:

При превышении уставки аварийной защиты по уровню плотности потока нейтронов;

При достижении уставки аварийной защиты по скорости нарастания плотности потока нейтронов (или реактивности) при работе реактора на стационарном уровне мощности или при проведении работ на остановленном реакторе;

При нарушении электроснабжения СУЗ;

При неисправности или нерабочем состоянии одного из каналов аварийной защиты по уровню или скорости нарастания плотности потока нейтронов;

При появлении технологических сигналов, требующих останова ИИР;

При нарушении установленных эксплуатационных характеристик модулятора реактивности ИИР ПД;

При срабатывании ключей (кнопок), предназначенных для инициирования срабатывания аварийной защиты.

2.3.3.7. Для каждого канала и в целом для комплекта аппаратуры аварийной защиты должна быть предусмотрена возможность проверки формирования и времени прохождения сигналов аварийной защиты без срабатывания рабочих органов аварийной защиты.

2.3.3.8. В системе аварийной защиты должны быть предусмотрены автоматический контроль и диагностика комплектов аппаратуры аварийной защиты и каналов защиты с выводом информации об отказах в каналах в основной пункт управления реактором, а также формирование сигналов аварийной защиты об отказах каналов или комплектов аппаратуры аварийной защиты.

2.3.3.9. В проекте должны быть обоснованы допустимость и условия вывода из работы одного комплекта аппаратуры аварийной защиты или одного канала в комплекте аппаратуры аварийной защиты.

2.3.3.10. Каждый комплект аппаратуры аварийной защиты должен работать на основе мажоритарной логики, которая выбирается на основе анализа надежности, приводимого в проекте.

2.3.3.11. В проекте должен быть приведен и обоснован перечень параметров и исходных событий, при которых требуется автоматическое срабатывание системы аварийного расхолаживания активной зоны.

2.3.3.12. Проектом должна быть предусмотрена регистрация причин срабатывания систем безопасности.

2.3.3.13. Отказы в каналах УСБ элементов отображения и регистрации информации не должны влиять на выполнение этими каналами своих функций.

2.3.3.14. Должна быть предусмотрена возможность приведения систем безопасности в действие и осуществления контроля основных параметров реактора из резервного пункта управления реактором в случае отсутствия возможности их выполнения из основного пункта управления реактором.

2.3.4. Аварийные источники электроснабжения

2.3.4.1. Аварийные источники электроснабжения должны обеспечивать электроснабжение каналов контроля плотности потока нейтронов, указателей положения рабочих органов СУЗ и электроснабжение систем (элементов), используемых при аварийном расхолаживании активной зоны.

2.4. Экспериментальные устройства

2.4.1. В проекте должны быть приведены оценки эффектов реактивности, обусловленных установкой (извлечением) экспериментальных устройств.

2.4.2. Проектом должно быть обеспечено отсутствие при установке экспериментальных устройств в реактор локальной критической массы и такой деформации полей энерговыделения, которая могла бы вызвать повреждение элементов активной зоны.

2.4.3. Экспериментальные устройства при необходимости должны быть оснащены детекторами контроля плотности потока нейтронов, теплофизических и других параметров, важных для безопасности.

2.4.4. Конструкция экспериментальных устройств должна исключать возможность их самопроизвольного перемещения или изменения их параметров при монтаже (демонтаже) и эксплуатации, а также обеспечивать локализацию (удержание) внутри себя испытываемых элементов в случае их разрушения.

2.4.5. Если установка (извлечение) экспериментальных устройств ведет к увеличению реактивности на 0,3β эфф и более, проектом должно быть обеспечено шаговое увеличение реактивности со значением шага, не превышающим 0,3β эфф.

2.4.6. Проектно-конструкторская документация на экспериментальные устройства, не предусмотренные проектом ИИР, должна быть согласована с разработчиками ИИР и эксплуатирующей организацией.

2.4.7. Использованию на ИИР новых экспериментальных устройств должно предшествовать экспериментальное исследование их влияния на нейтронно-физические характеристики реактора (запас реактивности, распределение энерговыделения и т.д.).

2.4.8. Проектом должны быть определены условия, объем и периодичность проверок экспериментальных устройств на соответствие проектным характеристикам.

3. Обеспечение ядерной безопасности при вводе в эксплуатацию и при эксплуатации импульсных исследовательских ядерных реакторов

3.1. Физический пуск

3.1.1. Готовность ИИР к проведению физического пуска должны проверять рабочая комиссия и комиссия по ядерной безопасности, которые должны быть назначены эксплуатирующей организацией

3.1.2. Рабочая комиссия должна проверить:

Соответствие выполненных на площадке ИИР работ проекту;

Укомплектованность реактора персоналом;

Готовность к работе оборудования, используемого при физическом пуске, наличие протоколов испытаний оборудования и актов об окончании пусконаладочных работ;

Наличие эксплуатационной, программно-методической, организационно-распорядительной и оперативной документации в объеме перечня документации ИИР на период физического пуска реактора, утвержденного руководством эксплуатирующей организации;

Соответствие качества работ, выполненных при сооружении реактора и проведении пусконаладочных работ, требованиям общей и частных программ обеспечения качества.

3.1.3. Результаты работы рабочей комиссии должны быть оформлены актом утвержденным руководителем эксплуатирующей организации.

3.1.4. Комиссия по ядерной безопасности должна проверить:

Готовность реактора к физическому пуску с учетом актов об устранении недостатков, приведенных в акте рабочей комиссии;

Применение мер по обеспечению ядерной безопасности, предусмотренных в программе физического пуска ИИР и в инструкции по обеспечению ядерной безопасности при физическом пуске ИИР;

Готовность персонала к началу работ по программе физического пуска, в том числе наличие у руководства и персонала ИИР разрешений на право ведения работ в области использования атомной энергии.

3.1.5. Результаты работы комиссии по ядерной безопасности должны быть оформлены актом, утвержденным руководителем эксплуатирующей организации.

3.1.6. Положением, утвержденным руководителем эксплуатирующей организации, должны быть определены права и обязанности должностных лиц и структурных подразделений эксплуатирующей организации, руководства и персонала ИИР по обеспечению ядерной безопасности реактора.

3.1.7. Приказом по эксплуатирующей организации должны быть назначены руководитель физического пуска, начальники смен и контролирующие физики, при этом должны быть определены их права и обязанности.

3.1.8. Завоз ядерных материалов на реактор разрешается после выполнения соответствующих условий, установленных в лицензии на эксплуатацию ИИР.

3.1.9. Принятый в эксплуатирующей организации порядок обращения с ядерными материалами (ядерным топливом) должен соответствовать Правилам безопасности при хранении и транспортировке ядерного топлива на объектах атомной энергетики.

3.1.10. Руководитель эксплуатирующей организации после утверждения актов об устранении недостатков, отмеченных рабочей комиссией и комиссией по ядерной безопасности, должен издать приказ о проведении физического пуска ИИР.

3.1.11. Физический пуск ИИР должен проводиться в соответствии с программой физического пуска ИИР, согласованной с организациями - разработчиками проекта ИИР и утвержденной руководством эксплуатирующей организации.

3.1.12. На этапе физического пуска все работы на площадке ИИР должны выполняться в последовательности и объеме, определенными программой физического пуска ИИР, и при проведении организационно-технических мероприятий, установленных инструкцией по обеспечению ядерной безопасности при физическом пуске ИИР.

3.1.13. В программе физического пуска ИИР должны быть определены порядок загрузки реактора ядерным топливом и порядок выхода в критическое состояние, должны быть приведены перечень, описание и последовательность проведения планируемых экспериментов.

3.1.14. В процессе набора критической массы должно проводиться построение "кривых обратного счета" по показаниям не менее чем двух измерительных каналов контроля мощности, при этом, как минимум, одна из "кривых обратного счета" должна иметь "безопасный ход".

3.1.15. Для ИИР АД со связанными активными зонами программой физического пуска ИИР должно быть предусмотрено два подэтапа работ, включая:

Исследование нейтронно-физических характеристик каждой из активных зон ИИР при удалении других активных зон на расстояние, при котором их влияние на исследуемую активную зону будет минимальным;

Одновременное исследование нейтронно-физических характеристик связанных активных зон ИИР.

3.1.16. Инструкция по обеспечению ядерной безопасности при физическом пуске ИИР должна предусматривать меры по обеспечению ядерной безопасности, содержать краткое описание СУЗ (включая внештатную пусковую аппаратуру, если она используется), а также характеристики каналов контроля уровня и скорости изменения плотности потока нейтронов, характеристики каналов аварийной защиты, расчетные значения критических загрузок и эффективностей рабочих органов СУЗ, оценку влияния на реактивность загружаемых экспериментальных устройств и теплоносителя, допустимые скорости ввода положительной реактивности при перемещении рабочих органов СУЗ.

Инструкция по обеспечению ядерной безопасности при физическом пуске ИИР должна быть утверждена руководством эксплуатирующей организации.

3.1.17. Все распоряжения руководителя физического пуска и операции, выполняемые персоналом, а также проводимые эксперименты и их результаты должны фиксироваться в журнале распоряжений, оперативном журнале смены и журнале измерений соответственно.

3.1.18. По результатам физического пуска должен быть оформлен отчет, где должны быть приведены результаты физического пуска и дан их краткий анализ.

3.2. Энергетический пуск

3.2.1. К началу проведения энергетического пуска должны быть приняты в эксплуатацию все сооружения, устройства и системы, предусмотренные проектом ИИР, а также подготовлена документация в объеме перечня действующей на ИИР документации, утвержденного руководством эксплуатирующей организации.

3.2.2. Проверка готовности реактора к энергетическому пуску и последующей эксплуатации должна проводиться рабочей комиссией, назначаемой приказом руководителя эксплуатирующей организации, и Государственной приемочной комиссией, назначаемой по представлению федерального органа по управлению использованием атомной энергии, в порядке, установленном действующим законодательством.

3.2.3. Решение о проведении энергетического пуска принимается Государственной приемочной комиссией на основании утвержденного руководителем эксплуатирующей организации акта об устранении недостатков, выявленных рабочей комиссией.

Решение о проведении энергетического пуска должно быть оформлено приказом по эксплуатирующей организации.

3.2.4. Приказом по эксплуатирующей организации должен быть назначен руководитель энергетического пуска реактора, при этом должны быть определены его права и обязанности.

3.2.5. Энергетический пуск ИИР должен проводиться в соответствии с программой энергетического пуска, откорректированной при необходимости по результатам физического пуска, согласованной с организациями - разработчиками проекта и утвержденной руководством эксплуатирующей организации.

3.2.6. В программе энергетического пуска ИИР должны быть определены основные этапы работ, исходное состояние реактора и систем перед началом каждого этапа работ, их аппаратурно-методическое обеспечение, а также меры по обеспечению ядерной безопасности.

3.2.7. Результаты энергетического пуска должны быть оформлены отчетом, где должны быть даны рекомендации по эксплуатации ИИР, а также рекомендации по корректировке эксплуатационной документации и отчета по обоснованию безопасности ИИР.

3.3. Режим пуска и работа на мощности

3.3.1. Эксплуатация ИИР в режиме пуска и работы на мощности должна проводиться на основании программы экспериментальных исследований на ИИР, утвержденной руководством эксплуатирующей организации, при соблюдении требований, установленных в технологическом регламенте эксплуатации ИИР и в другой эксплуатационной документации, а также в соответствии с характеристиками (параметрами), указанными в паспорте на ИИР.

3.3.2. Образец паспорта на импульсный исследовательский ядерный реактор приведен в приложении.

3.3.3. В программе экспериментальных исследований на ИИР должны быть приведены циклограмма работы реактора на мощности, параметры планируемых импульсов мощности, исходное (стартовое) состояние реактора и технологических систем, а также меры по обеспечению ядерной безопасности, учитывающие специфику предстоящих экспериментальных исследований на реакторе.

3.3.4. Эксплуатация ИИР в режиме пуска и работы на мощности должна проводиться только при использовании экспериментальных устройств, указанных в паспорте на ИИР.

3.3.5. До вывода реактора на мощность после обеспечения и контрольной проверки необходимых характеристик (параметров) реактора и технологических систем должны быть выполнены организационно-технические мероприятия, исключающие до реализации импульсов мощности изменение выбранных уставок и параметров реактора и технологических систем.

3.3.6. Если при подготовке реактора к эксплуатации в режиме пуска и работы на мощности не будут выполнены в полном объеме требования, установленные технологическим регламентом эксплуатации ИИР или другой эксплуатационной документацией, или в процессе эксплуатации ИИР в режиме пуска и работы на мощности будут нарушены условия безопасной эксплуатации, то реактор должен быть переведен в режим временного останова. Последующая эксплуатация ИИР в режиме пуска и работы на мощности возможна только после устранения причин, вызвавших перевод реактора в режим временного останова, и по письменному разрешению (указанию) руководителя эксплуатирующей организации.

3.3.7. Эксплуатация ИИР в режиме пуска и работы на мощности в случае изменения технических характеристик (параметров), приведенных в паспорте на ИИР, разрешается только после переоформления паспорта на ИИР.

3.4. Режим временного останова

3.4.1. Для эксплуатации ИИР в режиме временного останова реактор предварительно должен быть приведен в безопасное состояние, при этом величина подкритичности реактора должна соответствовать значению, установленному в проекте, и быть не менее 2% (К эфф ≤ 0,98) при взведенных рабочих органах аварийной защиты.

3.4.2. Все работы в реакторном зале после приведения реактора в безопасное состояние должны выполняться не менее чем двумя работниками с регистрацией факта посещения реакторного зала в соответствующем журнале.

3.4.3. Техническое обслуживание, планово-предупредительный ремонт, испытания и проверка работоспособности систем, важных для безопасности, должны проводиться в соответствии с действующими инструкциями, программами и графиками, утвержденными главным инженером ИИР.

3.4.4. После завершения работ по техническому обслуживанию, ремонту или замене элементов систем, важных для безопасности, должна проводиться проверка их работоспособности и соответствия проектным характеристикам с документальным оформлением результатов.

3.4.5. Ядерно-опасные работы на ИИР должны проводиться по техническому решению (плану организации работ), утвержденному начальником (главным инженером) ИИР, где должны быть определены:

Цель проведения и перечень планируемых ядерно-опасных работ, последовательность и технология их выполнения;

Технические и организационные меры по обеспечению ядерной безопасности при проведении ядерно-опасных работ;

Расчетные и экспериментальные оценки влияния планируемых работ на реактивность реактора для каждой ядерно-опасной операции отдельно.

3.4.6. Технология проведения ядерно-опасных работ, постоянно повторяющихся на ИИР, когда экспериментально известно изменение реактивности от проводимых операций, может быть внесена в руководство по эксплуатации ИИР и в технологический регламент эксплуатации ИИР. В этом случае составление технического решения (см. пункт 3.4.5) необязательно.

3.4.7. При проведении ядерно-опасных работ на ИИР должен обеспечиваться контроль за плотностью потока нейтронов и скоростью его изменения, при этом должны быть выставлены минимальные уставки для предупредительной и аварийной световой и звуковой сигнализации по уровню и скорости изменения плотности потока нейтронов.

3.4.8. Ядерно-опасные работы, как правило, должны проводиться при взведенных рабочих органах аварийной защиты.

Ситуации, когда ядерно-опасные работы проводятся без взвода рабочих органов аварийной защиты, должны быть определены в руководстве по эксплуатации и в технологическом регламенте эксплуатации ИИР, при этом требования пунктов 3.4.5 и 3.4.7 должны соблюдаться в обязательном порядке.

3.5. Режим длительного останова

3.5.1. При принятии решения о переводе ИИР в режим длительного останова эксплуатирующая организация должна разработать мероприятия, проведение которых обеспечивает безопасность реактора в режиме длительного останова и предотвращает преждевременную потерю работоспособности систем (элементов), важных для безопасности, в том числе коррозию оболочек твэлов и корпусов ТВС, находящихся в реакторе или в хранилищах.

Объем и периодичность контроля состояния ИИР, находящегося в режиме длительного останова, должны быть определены в руководстве по эксплуатации ИИР.

3.5.2. До начала работ по переводу реактора в режим длительного останова необходимо обеспечить глубокую подкритичность реактора, при этом величина подкритичности должна соответствовать значению, установленному в проекте, и быть не менее 5% (К эфф ≤ 0,95).

3.5.3. С учетом ожидаемой продолжительности режима длительного останова и других факторов должен быть рассмотрен вопрос о целесообразности выгрузки ядерного топлива из активной зоны реактора.

3.5.4. Используемые методы консервации систем реактора и объем технического обслуживания реактора не должны приводить к сокращению назначенного срока эксплуатации систем (элементов), важных для безопасности, и соответствовать требованиям проекта.

3.5.5. Объем и периодичность контроля состояния реактора, находящегося в режиме длительного останова, должны быть определены в руководстве по эксплуатации реактора.

3.5.6. В случае необходимости перевода реактора из режима длительного останова в режим пуска и работы на мощности работы должны проводиться по программе, утвержденной начальником (главным инженером) ИИР.

3.6. Режим окончательного останова

3.6.1. Режим окончательного останова ИИР вводится по решению федерального органа по управлению использованием атомной энергии.

3.6.2. При эксплуатации реактора в режиме окончательного останова эксплуатирующая организация должна выполнить организационно-технические мероприятия по подготовке предстоящих работ по выводу из эксплуатации реактора, включая выгрузку из активной зоны ядерного топлива по технологии, определенной в проекте, и вывоз ядерных материалов с площадки реактора.

3.6.3. Акт по результатам выполнения работ по вывозу ядерных материалов с площадки реактора должен быть представлен в федеральный орган по управлению использованием атомной энергии и в Госатомнадзор России.

4. Контроль соблюдения правил

4.1. Эксплуатирующая организация должна обеспечить постоянный контроль соблюдения Правил и ежегодно проводить комиссионную проверку состояния ядерной безопасности ИИР комиссией, назначаемой приказом руководителя эксплуатирующей организации. Результаты проверки должны отражаться в годовых отчетах по оценке состояния ядерной и радиационной безопасности ИИР, представляемых в федеральный орган по управлению использованием атомной энергии и в Госатомнадзор России.

Приложение

(образец)

Паспорт на импульсный исследовательский ядерный реактор

1. Наименование и тип ИИР.............................................……………………………………

2. Назначение ИИР.....................................................……………………………………….

3. Место размещения...................................................………………………………………

4. Эксплуатирующая организация........................................………………………………..

5. Разработчики проекта ИИР...........................................……………………………………

6. Дата ввода в эксплуатацию ИИР......................................…………………………………

7. Назначенный срок эксплуатации, год.................................……………………………….

8. Основные параметры реактора:

количество активных зон, шт......................................…………………………………….

размеры активной зоны (диаметр × высота), мм....................…………………………….

делящиеся изотопы и их количество, кг...........................…………………………………

ядерное топливо:

нуклидный состав................................................………………………………………….

обогащение, %...................................................……………………………………………

замедлитель.....................................................……………………………………………..

отражатель......................................................………………………………………………

теплоноситель..................................................……………………………………………

9. Основные нейтронно-физические и другие характеристики реактора:

запас реактивности, β эфф....................................……………………………………………

подкритичность реактора после взвода рабочих органов аварийной

защиты, β эфф................................................………………………………………………..

безопасная подкритичность, β эфф.............................………………………………………

глубокая подкритичность, β эфф...............................………………………………………..

время жизни мгновенных нейтронов, с.............................………………………………..

эффективная доля запаздывающих нейтронов, %.......................…………………………

импульсная доля запаздывающих нейтронов, %........................…………………………

суммарное значение и основные составляющие мощностного (температурного)

эффекта реактивности...........................……………………………………………………

максимальная плотность потока нейтронов, н/см 2 ·с...............……………………………

10. Предельные параметры импульса мощности:

максимальное энерговыделение за номинальный импульс мощности, Дж …………….

максимальная надкритичность для инициирования импульса мощности на

мгновенных нейтронах, β эфф..................................…………………………………………

допустимая скорость увеличения реактивности за импульс мощности, β эфф /с.........……

максимальная амплитуда импульса мощности, кВт...................…………………………

11. Вводимая суммарная отрицательная реактивность при гашении импульса

мощности и ее составляющие, включая:

отрицательный мощностной (температурный) эффект реактивности, β эфф........………..

отрицательную реактивность, вносимую рабочими органами СУЗ, β эфф........…………..

12. Защитные системы безопасности.....................................………………………………..

13. Характеристики рабочих органов СУЗ

Рабочие органы СУЗ

Группы рабочих органов СУЗ, шт.

Рабочие органы в группе СУЗ, шт.

Эффективность каждой группы СУЗ, β эфф

Время срабатывания (ввода или вывода) рабочих органов СУЗ, с

Аварийная защита

Автоматический регулятор

Ручной регулятор

Компенсатор реактивности

Пусковое устройство

Модулятор реактивности

14. Дополнительные технические средства воздействия на реактивность и их эффективность, β эфф..........................................……………………………………………………..

15. Каналы аварийной защиты по уровню плотности потока нейтронов (количество каналов и тип приборов)...............................………………………………………………………..

16. Каналы аварийной защиты по скорости нарастания плотности потока нейтронов (количество каналов и тип приборов).....................………………………………………………..

17. Каналы контроля уровня плотности потока нейтронов и скорости нарастания плотности потока нейтронов (количество каналов и тип приборов).........................................................……………………………………………………….

18. Каналы контроля уровня плотности потока нейтронов с записывающими приборами (количество каналов и тип приборов).....................………………………………………………...

19. Экспериментальные устройства и вносимая ими реактивность, β эфф ……………………..

20. Паспорт выдан на основании........................................………………………………………

21. Паспорт действителен до "____"_________________

"_____"___________________г.

Руководитель эксплуатирующей

организации

М.П.

Ф.И.О. _______________подпись

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ,
ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

ПОСТАНОВЛЕНИЕ

Об утверждении и введении в действие федеральных
норм и правил в области использования атомной энергии
"Правила ядерной безопасности реакторных установок
атомных станций"


Федеральная служба по экологическому, технологическому и атомному надзору

постановляет:

Утвердить и ввести в действие с 1 июня 2008 года прилагаемые федеральные нормы и правила в области использования атомной энергии "Правила ядерной безопасности реакторных установок атомных станций" (НП-082-07).

Руководитель
К.Б.Пуликовский

Зарегистрировано
в Министерстве юстиции
Российской Федерации
21 января 2008 года,
регистрационный N 10951

НП-082-07. Правила ядерной безопасности реакторных установок атомных станций

Приложение

УТВЕРЖДЕНЫ
постановлением Федеральной
службы по экологическому,
технологическому и атомному надзору
от 10 декабря 2007 года N 4

НП-082-07

Перечень сокращений

АЗ - аварийная защита

АС - атомная станция

ACT - атомная станция теплоснабжения

БН - реактор на быстрых нейтронах с натриевым теплоносителем

БПУ (БЩУ) - блочный пункт (щит) управления

ВВЭР - водо-водяной энергетический реактор

ООБ - отчет по обоснованию безопасности

ПЗ - предупредительная защита

РБМК - реактор большой мощности канальный

РПУ (РЩУ) - резервный пункт (щит) управления

РУ - реакторная установка

СУЗ - система управления и защиты

ТВС - тепловыделяющая сборка

твэл - тепловыделяющий элемент

УСБ - управляющие системы безопасности

УСНЭ - управляющие системы нормальной эксплуатации

ЭГП-6 - энергетическая графитовая петельная реакторная установка

Термины и определения

В целях настоящего документа используются следующие термины и определения.

1. Аварийная защита:

- функция безопасности, заключающаяся в быстром переводе реактора в подкритическое состояние и в поддержании его в подкритическом состоянии;

- комплекс систем безопасности, выполняющий функцию АЗ.

2. Активная зона - часть реактора, в которой размещены ядерное топливо, замедлитель, поглотитель, теплоноситель, средства воздействия на реактивность и элементы конструкций, предназначенные для осуществления управляемой цепной ядерной реакции деления и передачи энергии теплоносителю.

3. Группа рабочих органов СУЗ - один или несколько рабочих органов СУЗ, объединенных по управлению в целях одновременного совместного перемещения и воздействия на реактивность.

4. Диагностика - функция контроля, целью которой является определение состояния работоспособности (неработоспособности) или исправности (неисправности) диагностируемого объекта.

5. Извлечение средств воздействия на реактивность - такое перемещение или изменение состояния средств воздействия на реактивность, которое приводит к вводу положительной реактивности (введение средств воздействия на реактивность приводит к вводу отрицательной реактивности).

6. Исполнительный механизм СУЗ - устройство, состоящее из привода, рабочих органов и соединительных элементов и предназначенное для изменения реактивности реактора.

7. Канал контроля - совокупность датчиков, линий связи, средств обработки сигналов и (или) представления параметров, предназначенных для обеспечения контроля в заданном проектом объеме.

8. Комплект аппаратуры АЗ - аппаратура системы управления и защиты, выполняющая в заданном проектом РУ объеме функции контроля и управления АЗ.

9. Максимальный запас реактивности - реактивность, которая может реализовываться в реакторе при удалении из активной зоны всех средств воздействия на реактивность и извлекаемых поглотителей для момента кампании и состояния реактора с максимальным значением эффективного коэффициента размножения.

10. Максимальный проектный предел повреждения твэлов - допустимые значения параметров и характеристик твэлов в условиях проектных аварий, превышение которых может приводить к разрушению твэлов.

11. Перегрузка активной зоны (перегрузка) - ядерно опасные работы на РУ по загрузке, извлечению и перемещению ТВС (твэлов), средств воздействия на реактивность и других элементов, влияющих на реактивность, в целях их ремонта, замены и демонтажа.

12. Повреждение твэла - нарушение хотя бы одного из установленных для твэлов проектных пределов повреждения.

13. Предупредительная защита - функция, выполняемая управляющей системой нормальной эксплуатации блока АС, для предотвращения срабатывания аварийной защиты и (или) нарушений пределов и условий безопасной эксплуатации.

14. Привод СУЗ - устройство, предназначенное для изменения положения механического рабочего органа СУЗ и его удержания в фиксированном положении.

15. Рабочий орган АЗ - средство воздействия на реактивность, используемое в АЗ.

16. Рабочий орган СУЗ - средство воздействия на реактивность, используемое в СУЗ.

17. Разгерметизация твэла - повреждение твэла с нарушением целостности оболочки твэла типа газовой неплотности или прямого контакта ядерного топлива с теплоносителем.

18. Разрушение твэла - нарушение целостности конструкции твэла, в результате которой твэл утрачивает геометрию, обеспечивающую его проектное охлаждение.

19. Реакторная установка - комплекс систем и элементов АС, предназначенный для преобразования ядерной энергии в тепловую, включающий реактор и непосредственно связанные с ним системы, необходимые для его нормальной эксплуатации, аварийного охлаждения, аварийной защиты и поддержания в безопасном состоянии при условии выполнения требуемых вспомогательных и обеспечивающих функций другими системами АС. Границы РУ устанавливаются для каждой АС в проекте.

20. Сигнал АЗ - сигнал, формируемый в комплекте аппаратуры АЗ с целью инициировать срабатывание рабочих органов АЗ и поступающий в средства регистрации, а также на БПУ и РПУ для оповещения персонала.

21. Сигнал ПЗ - сигнал, формируемый и регистрируемый системами контроля и управления для инициирования функций ПЗ и оповещения персонала о возможных нарушениях нормальной эксплуатации.

22. Система остановки реактора - система, предназначенная для перевода реактора в подкритическое состояние и поддержания его в подкритическом состоянии с помощью средств воздействия на реактивность.

23. Система управления и защиты - совокупность средств технического, программного и информационного обеспечения, предназначенных для обеспечения безопасного протекания цепной ядерной реакции деления.

Система управления и защиты - система, важная для безопасности, совмещающая функции нормальной эксплуатации и безопасности и состоящая из элементов управляющих систем нормальной эксплуатации, защитных, управляющих и обеспечивающих систем безопасности.

24. Средства воздействия на реактивность - технические средства, реализуемые в виде твердых, жидких или газообразных поглотителей (замедлителей, отражателей), изменением положения или состояния которых в активной зоне или отражателе обеспечивается изменение реактивности активной зоны реактора.

25. Тепловыделяющая сборка - машиностроительное изделие, содержащее ядерные материалы и предназначенное для получения тепловой энергии в ядерном реакторе за счет осуществления контролируемой ядерной реакции.

26. Тепловыделяющий элемент (твэл) - отдельная сборочная единица, содержащая ядерные материалы и предназначенная для получения тепловой энергии в ядерном реакторе за счет осуществления контролируемой ядерной реакции деления и (или) для накопления нуклидов.

27. Тяжелое повреждение активной зоны реактора - запроектная авария с повреждением твэлов выше максимального проектного предела, при которой может быть превышен предельно допустимый аварийный выброс радиоактивных веществ в окружающую среду.

28. Указатель положения рабочего органа СУЗ - устройство для определения положения рабочего органа СУЗ в активной зоне реактора.

29. Эквивалентная степень окисления оболочки - отнесенная к начальной толщине оболочки суммарная толщина эквивалентного слоя, который прореагировал бы с водяным паром в предположении, что весь местно-поглощенный кислород пошел на образование стехиометрического диоксида циркония ZrO. В случае разгерметизации оболочки учитывается окисление как наружной, так и внутренней поверхности оболочки.

1. Назначение и область применения

1.1. Настоящие Правила ядерной безопасности реакторных установок атомных станций распространяются на все проектируемые, конструируемые, сооружаемые и эксплуатируемые АС.

1.2. Настоящие Правила устанавливают требования к конструкции, характеристикам и условиям эксплуатации систем и элементов РУ, а также организационные требования, направленные на обеспечение ядерной безопасности при проектировании, конструировании, сооружении и эксплуатации РУ и АС.

1.3. Настоящие Правила разработаны на основе требований общих положений обеспечения безопасности АС, а также опыта проектирования, конструирования, сооружения и эксплуатации АС и конкретизируют требования общих положений обеспечения безопасности АС в части обеспечения ядерной безопасности РУ и АС, за исключением требований к хранению и транспортированию ядерного топлива.

1.4. Ядерная безопасность РУ и АС определяется техническим совершенством проектов, требуемым качеством изготовления, монтажа, наладки и испытаний элементов и систем, важных для безопасности, их надежностью при эксплуатации, диагностикой технического состояния оборудования, качеством и своевременностью проведения технического обслуживания и ремонта оборудования, контролем и управлением технологическими процессами при эксплуатации, организацией работ, квалификацией и дисциплиной персонала.

1.5. Ядерная безопасность РУ и АС обеспечивается системой технических и организационных мер, предусмотренных концепцией глубокоэшелонированной защиты, в том числе за счет:

использования и развития свойств внутренней самозащищенности;

использования систем безопасности, построенных на основе принципов независимости, разнообразия и резервирования; единичного отказа;

использования надежных, проверенных практикой технических решений и обоснованных методик, расчетных анализов и экспериментальных исследований;

выполнения требований нормативных документов по безопасности РУ и АС, соблюдения требований проектов РУ и АС;

устойчивости технологических процессов;

реализации систем обеспечения качества на всех этапах создания и эксплуатации АС;

формирования и внедрения культуры безопасности на всех этапах создания и эксплуатации АС.

2. Требования обеспечения ядерной безопасности, предъявляемые к реактору и другим системам, важным для безопасности

2.1. Общие требования

2.1.1. Проектирование, сооружение и эксплуатация блока АС, а также конструирование и изготовление элементов РУ и АС должны осуществляться с соблюдением требований действующих нормативных документов по безопасности АС.

2.1.2. Сооружению АС должна предшествовать разработка проекта РУ и проекта АС. В проектах РУ и АС должны быть определены системы, важные для безопасности, их основные характеристики, надежность, срок службы, а также порядок их функционирования, условия эксплуатации, средства контроля и диагностики этих систем.

2.1.3. Изменение состава, конструкции и (или) характеристик РУ и ее систем, важных для безопасности, а также условий эксплуатации АС не может быть выполнено без внесения соответствующих изменений в проекты РУ и АС.

2.1.4. При разработке проекта РУ и (или) при модернизации активной зоны реактора с использованием новых конструкций ТВС, новых композиций ядерного топлива, совершенствовании СУЗ и других систем, важных для безопасности, должны быть выполнены необходимые стендовые и реакторные исследования. В проекте РУ должна быть показана достаточность проведенных исследований для доказательства выполнения критериев безопасности.

2.1.5. Для всех этапов жизненного цикла РУ и АС должны быть разработаны программы обеспечения качества.

2.1.6. В целях поддержания и подтверждения проектных характеристик системы (элементы) РУ и АС, важные для безопасности, должны проходить контроль и испытания в процессе изготовления, монтажа и наладки, а также периодическую проверку в процессе эксплуатации.

Проектами РУ и АС должны быть предусмотрены устройства, методики и периодичность проверок систем, важных для безопасности, на соответствие их проектным характеристикам, включая комплексное опробование (последовательности и времени прохождения сигналов, в том числе срабатывания АЗ, перехода на аварийные источники питания, обеспечения функций безопасности и т.д.).

Проектами РУ и АС должны быть определены перечни систем и элементов, работоспособность и характеристики которых проверяются на работающем или остановленном реакторе, с указанием состояния РУ и систем РУ и АС, важных для безопасности.

Устройства и методики проверки систем РУ и АС, важных для безопасности, и их элементов не должны влиять на безопасность АС.

2.1.7. Основным документом по обоснованию ядерной безопасности РУ является отчет по обоснованию безопасности АС (соответствующие разделы ООБ АС). Для АС, ООБ которых не разрабатывался, таким документом является действующее техническое обоснование безопасности (ТОБ) или отчет по углубленной оценке безопасности (ОУОБ). Разработка ООБ АС осуществляется эксплуатирующей организацией при соблюдении соответствия ООБ АС проектам РУ и АС.

2.1.8. В проектах РУ и АС должны быть установлены и представлены в ООБ АС перечень исходных событий проектных аварий и перечень запроектных аварий, классификация проектных и запроектных аварий по частоте возникновения и по тяжести последствий, а также анализ проектных и запроектных аварий и их последствий. В числе запроектных аварий необходимо рассмотреть аварии с тяжелым повреждением активной зоны.

2.1.9. При проектировании РУ следует стремиться к тому, чтобы оцененное на основе вероятностного анализа безопасности значение суммарной частоты тяжелого повреждения активной зоны не превышало 10 на реактор в год.

2.1.10. Проекты РУ и АС должны содержать анализ возможных отказов систем (элементов), важных для безопасности, с выделением опасных для РУ и АС отказов и оценкой их последствий на основе вероятностного и детерминистического анализа безопасности.

2.1.11. В проектах РУ и АС должны быть приведены и обоснованы эксплуатационные пределы и условия, пределы и условия безопасной эксплуатации, а также проектные пределы, установленные для проектных аварий.

2.1.12. В проектах РУ и АС каждой проектной аварии или группе аварий должны быть поставлены в соответствие проектные пределы для проектных аварий, которые не должны превышаться с учетом действия систем безопасности.

2.1.13. В проектах РУ и АС должно быть показано, что для проектных аварий с наиболее тяжелыми последствиями не превышается максимальный проектный предел повреждения твэлов.

Для остальных проектных аварий проектные пределы повреждения твэлов должны устанавливаться проектом РУ и иметь значения, меньшие максимального проектного предела повреждения твэлов.

Пределы повреждения твэлов для АС с наиболее распространенными типами РУ приведены в приложении.

Для проектируемых АС с другими типами РУ такие пределы должны быть обоснованы в проектах РУ и АС.

2.1.14. В проектах РУ и АС должен быть приведен перечень ядерно опасных работ.

2.1.15. В проектах РУ и АС должны быть представлены перечни методик и программ, применяемых при обосновании безопасности и используемых в системах, важных для безопасности. Используемые программы и методики должны быть верифицированы и аттестованы по установленным процедурам.

2.2. Активная зона реактора и элементы ее конструкции

2.2.1. Активная зона реактора должна быть спроектирована так, чтобы любые изменения реактивности при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не приводили к нарушению соответствующих пределов повреждения твэлов.

Требования к коэффициентам реактивности реакторов АС с наиболее распространенными типами РУ приведены в приложении.

2.2.2. В проекте РУ должно быть показано, что при проектных авариях, связанных с быстрым увеличением реактивности, усредненная по поперечному сечению топливной таблетки (среднерадиальная) энтальпия топлива должна быть не выше предельного значения, устанавливаемого в проекте на основе экспериментальных данных, а также исключено разрушение твэлов и ТВС. Для запроектных аварий должны быть приведены условия, при которых возможно разрушение части твэлов и ТВС.

2.2.3. В проекте РУ должно быть установлено соответствие между пределами повреждения твэлов и активностью теплоносителя первого контура по реперным радионуклидам с учетом эффективности систем очистки теплоносителя.

2.2.4. Для обоснования выполнения требований к непревышению пределов безопасной эксплуатации по повреждению твэлов при нарушениях нормальной эксплуатации в проекте РУ должен быть выполнен анализ теплотехнической надежности активной зоны с обоснованием достаточности предусмотренных проектом РУ запасов.

2.2.5. Окисление оболочек твэлов в процессе эксплуатации РУ не должно приводить к их чрезмерному охрупчиванию. В проекте РУ должна быть обоснована (на основе экспериментальных данных) и приведена эквивалентная степень окисления оболочки твэлов при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии.

2.2.6. Для реакторов на быстрых нейтронах с натриевым теплоносителем должно быть показано, что при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, образование пустот в натриевом теплоносителе исключено.

2.2.7. Конструкция и исполнение активной зоны и ее элементов, включая ТВС и твэлы, должны быть такими, чтобы при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не превышались соответствующие пределы повреждения твэлов с учетом:

проектных режимов работы РУ, их количества и проектного протекания;

силового (механического), теплового и радиационного воздействия на компоненты активной зоны;

физико-химического взаимодействия материалов активной зоны и теплоносителя;

предельных отклонений конструктивных, технологических характеристик и параметров процессов;

ударных и вибрационных воздействий, термоциклического нагружения, радиационной и температурной ползучести, а также старения материалов;

влияния продуктов деления и примесей в теплоносителе на прочность и коррозионную стойкость твэлов;

других факторов, ухудшающих механические характеристики материалов активной зоны и целостность оболочек твэлов.

2.2.8. В проектах РУ и АС должна быть обоснована и обеспечена проектными техническими средствами возможность выгрузки поврежденных компонентов активной зоны после проектной аварии.

2.2.9. Активная зона и исполнительные механизмы СУЗ должны быть спроектированы так, чтобы исключались заклинивание, выброс рабочих органов или их самопроизвольное расцепление с приводами СУЗ.

2.2.10. В проекте РУ должно быть показано, что при непредусмотренном перемещении наиболее эффективных одного или группы рабочих органов СУЗ не происходит повреждение твэлов с нарушением пределов безопасной эксплуатации с учетом срабатывания АЗ без одного наиболее эффективного рабочего органа АЗ.

2.2.11. При нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, должна исключаться возможность непредусмотренных перемещений и (или) деформаций элементов активной зоны, вызывающих увеличение реактивности и ухудшение теплоотвода, приводящих к повреждению твэлов сверх соответствующих проектных пределов.

2.2.12. В проектах РУ и АС должно быть показано и обосновано, что при сейсмических воздействиях, свойственных площадке блока АС, обеспечивается беспрепятственный ввод в активную зону рабочих органов регулирования и A3, а также надежный теплоотвод от активной зоны.

2.2.13. Характеристики активной зоны и средств воздействия на реактивность должны быть такими, чтобы введение в активную зону и (или) отражатель средств воздействия на реактивность для любой комбинации их расположения при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, обеспечивало ввод отрицательной реактивности на любом участке их движения.

2.2.14. Конструкция ТВС должна быть такой, чтобы формоизменения твэлов и других элементов ТВС, возможные при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не вызывали перекрытие проходного сечения ТВС, приводящее к повреждению твэлов сверх соответствующих пределов, и не препятствовали нормальному функционированию рабочих органов СУЗ.

2.2.15. Конструкция ТВС должна иметь отличительные знаки, характеризующие нуклидный состав и обогащение ядерного топлива в твэлах, которые различаются визуально и (или) с помощью устройств перегрузки.

2.2.16. Твэлы различного обогащения, с выгорающим поглотителем в топливе, со смешанным топливом и т.п., специальные выгорающие поглотители в составе ТВС должны иметь отличительные знаки, которые различаются визуально и (или) с помощью промышленных средств контроля при сборке ТВС.

2.2.17. В проектах РУ и АС должны быть предусмотрены технические средства и методы контроля герметичности оболочек твэлов на остановленном и (или) работающем реакторе, которые должны обеспечивать надежное и своевременное обнаружение негерметичных TBC (твэлов), и установлены критерии для отбраковки негерметичных твэлов (ТВС). В проекте РУ и АС должны быть приведены и обоснованы методики, используемые для контроля герметичности оболочек твэлов на остановленном и (или) работающем реакторе.

2.3. Системы управления и защиты

2.3.1. Общие требования

2.3.1.1. В состав РУ должны входить системы управления и защиты, предназначенные:

для управления реактивностью активной зоны реактора и мощностью РУ;

для контроля плотности нейтронного потока (мощности), скорости его изменения, технологических параметров, необходимых для защиты и управления реактивностью активной зоны реактора и мощностью РУ;

для перевода реактора в подкритическое состояние и поддержания его в подкритическом состоянии.

2.3.1.2. Состав, структура, характеристики и порядок работы СУЗ должны быть обоснованы в проекте РУ. Проект РУ должен содержать количественный анализ надежности, в котором должно быть представлено, что показатели надежности СУЗ соответствуют требованиям нормативных документов, регламентирующих такие показатели.

2.3.1.3. Проект РУ должен содержать анализ реакций СУЗ на внешние и внутренние воздействия (пожары, землетрясения, затопления, электромагнитные наводки и т.д.), на возможные неисправности и отказы (короткие замыкания, потерю качества изоляции, падение и наводки напряжения, ложные срабатывания, потери управления и т.д.), доказывающий отсутствие опасных для РУ реакций.

В случае выявления в процессе эксплуатации опасных для РУ реакций СУЗ РУ должна быть остановлена и приняты меры по их исключению. Эксплуатирующая организация в установленном порядке должна обеспечить внесение соответствующих изменений в проект РУ.

2.3.1.4. В проекте РУ должны быть предусмотрены по меньшей мере две системы остановки реактора, каждая из которых должна быть способна, независимо одна от другой, обеспечивать перевод реактора в подкритическое состояние и поддержание его в подкритическом состоянии с учетом принципа единичного отказа или ошибки персонала. Эти системы должны проектироваться с соблюдением принципов разнообразия, независимости и резервирования.

2.3.1.5. По крайней мере одна из систем остановки реактора (не выполняющая функцию АЗ) при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, должна обладать:

эффективностью, достаточной для перевода реактора в подкритическое состояние и поддержания подкритического состояния с учетом возможного высвобождения реактивности;

быстродействием, достаточным для перевода реактора в подкритическое состояние без нарушения проектных пределов повреждения твэлов, установленных для проектных аварий (с учетом действия систем аварийного охлаждения активной зоны).

2.3.1.6. В проекте РУ должны быть определены и обоснованы количество, эффективность, расположение, состав групп, рабочие положения, последовательность и скорости перемещения рабочих органов СУЗ (включая рабочие органы АЗ), а также количество приводов.

2.3.1.7. В проекте РУ должны быть определены и обоснованы методы и условия испытаний, замены и вывода в ремонт рабочих органов СУЗ, их приводов, а также других средств воздействия на реактивность.
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА
В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ

Утверждены
постановлением
Федеральной службы
по экологическому,
технологическому и атомному
надзору
от 10 декабря 2007 г. № 4

Правила ядерной безопасности
реакторных установок
атомных станций

НП-082-07

Введены в действие
с 1 июня 2008 г.

Москва 2007

Федеральная служба по экологическому, технологическому и атомному надзору постановляет: Утвердить и ввести в действие с 1 июня 2008 г. прилагаемые федеральные нормы и правила в области использования атомной энергии "Правила ядерной безопасности реакторных установок атомных станций" (НП-082-07). Руководитель К.Б. Пуликовский Зарегистрировано в Минюсте РФ 21 января 2008 г. Регистрационный № 10951
Перечень сокращений Термины и определения 1. Назначение и область применения 2. Требования обеспечения ядерной безопасности, предъявляемые к реактору и другим системам, важным для безопасности 2.1. Общие требования 2.2. Активная зона реактора и элементы ее конструкции 2.3. Системы управления и защиты 2.3.1. Общие требования 2.3.2. Система аварийной защиты 2.3.3. Управление нейтронным потоком и реактивностью 2.4. Управляющие системы нормальной эксплуатации и управляющие системы безопасности 2.5. Контур теплоносителя РУ (первый контур) 2.6. Системы аварийного охлаждения активной зоны 2.7. Устройства перегрузки и порядок проведения перегрузки активной зоны 2.7.1. Устройства перегрузки 2.7.2. Порядок проведения перегрузки 3. Обеспечение ядерной безопасности при вводе блока АС в эксплуатацию 3.1. Физический пуск реактора 3.2. Энергетический пуск блока АС 4. Обеспечение ядерной безопасности при эксплуатации 5. Контроль соблюдения правил Приложение Пределы повреждения твэлов и требования к коэффициентам реактивности реакторов АС с наиболее распространенными типами РУ
Настоящие федеральные нормы и правила "Правила ядерной безопасности реакторных установок атомных станций" определяют требования к обеспечению ядерной безопасности реакторных установок атомных станций при проектировании, конструировании, сооружении и эксплуатации. Выпущены взамен Правил ядерной безопасности реакторных установок атомных станций ПБЯ РУ АС-89 с изменением № 1 и раздела 4 Правил ядерной безопасности атомных станций ПБЯ-04-74*. Постановление Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2007 г. № 4 "Об утверждении и введении в действие федеральных норм и правил в области использования атомной энергии "Правила ядерной безопасности реакторных установок атомных станций" зарегистрировано Министерством юстиции Российской Федерации 21 января 2008 г., регистрационный № 10951. * Разработаны специалистами НТЦ ЯРБ с учетом замечаний и предложений следующих организаций: ФГУП "Государственный научно-исследовательский проектно-конструкторский институт Атомэнергопроект", ФГУП "Российский государственный концерн по производству электрической и тепловой энергии на атомных станциях", ФГУП "Всероссийский научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара", ФГУП "Всероссийский проектный и научно-исследовательский институт комплексной энергетической технологии", ФГУП "Опытное конструкторское бюро "Гидропресс", ФГУП "Государственный научный центр Российской Федерации Физико-энергетический институт имени А.И. Лейпунского", открытое акционерное общество "Новосибирский завод химконцентратов", ФГУП "Государственный научный центр Российской Федерации Научно-исследовательский институт атомных реакторов", ОАО "Машиностроительный завод", ОАО "Мурманское морское пароходство", ОАО "ТВЭЛ", ФГУП "Опытно-конструкторское бюро машиностроения имени И.И. Африкантова", ФГУП "Горнохимический комбинат", ФГУП "Производственное объединение "Маяк", ФГУП "Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля", филиалы концерна "Росэнергоатом" Балаковская АЭС, Белоярская АЭС, Билибинская АЭС, Калининская АЭС, Кольская АЭС, Курская АЭС, Ленинградская АЭС, Нововоронежская АЭС, Смоленская АЭС, Управление ядерной и радиационной безопасности Агентства по атомной энергии, РНЦ "Курчатовский институт"

Перечень сокращений

АЗ - аварийная защита АС - атомная станция ACT - атомная станция теплоснабжения БН - реактор на быстрых нейтронах с натриевым теплоносителем БПУ (БЩУ) - блочный пункт (щит) управления ВВЭР - водо-водяной энергетический реактор КГО - контроль герметичности оболочки ООБ - отчет по обоснованию безопасности ПЗ - предупредительная защита РБМК - реактор большой мощности канальный РПУ (РЩУ) - резервный пункт (щит) управления РУ - реакторная установка СВБ - система важная для безопасности СУЗ - система управления и защиты ТВС - тепловыделяющая сборка твэл - тепловыделяющий элемент УСБ - управляющие системы безопасности УСНЭ - управляющие системы нормальной эксплуатации ЭГП-6 - энергетическая графитовая петельная реакторная установка

Термины и определения

В целях настоящего документа используются следующие термины и определения. 1. Аварийная защита : - функция безопасности, заключающаяся в быстром переводе реактора в подкритическое состояние и в поддержании его в подкритическом состоянии; - комплекс систем безопасности, выполняющий функцию АЗ. 2. Активная зона - часть реактора, в которой размещены ядерное топливо, замедлитель, поглотитель, теплоноситель, средства воздействия на реактивность и элементы конструкций, предназначенные для осуществления управляемой цепной ядерной реакции деления и передачи энергии теплоносителю. 3. Группа рабочих органов СУЗ - один или несколько рабочих органов СУЗ, объединенных по управлению в целях одновременного совместного перемещения и воздействия на реактивность. 4. Диагностика - функция контроля, целью которой является определение состояния работоспособности (неработоспособности) или исправности (неисправности) диагностируемого объекта. 5. Извлечение средств воздействия на реактивность - такое перемещение или изменение состояния средств воздействия на реактивность, которое приводит к вводу положительной реактивности (введение средств воздействия на реактивность приводит к вводу отрицательной реактивности). 6. Исполнительный механизм СУЗ - устройство, состоящее из привода, рабочих органов и соединительных элементов и предназначенное для изменения реактивности реактора. 7. Канал контроля - совокупность датчиков, линий связи, средств обработки сигналов и (или) представления параметров, предназначенных для обеспечения контроля в заданном проектом объеме. 8. Комплект аппаратуры АЗ - аппаратура системы управления и защиты, выполняющая в заданном проектом РУ объеме функции контроля и управления АЗ. 9. Максимальный запас реактивности - реактивность, которая может реализовываться в реакторе при удалении из активной зоны всех средств воздействия на реактивность и извлекаемых поглотителей для момента кампании и состояния реактора с максимальным значением эффективного коэффициента размножения. 10. Максимальный проектный предел повреждения твэлов - допустимые значения параметров и характеристик твэлов в условиях проектных аварий, превышение которых может приводить к разрушению твэлов. 11. Перегрузка активной зоны (перегрузка) - ядерно-опасные работы на РУ по загрузке, извлечению и перемещению ТВС (твэлов), средств воздействия на реактивность и других элементов, влияющих на реактивность, в целях их ремонта, замены и демонтажа. 12. Повреждение твэла - нарушение хотя бы одного из установленных для твэлов проектных пределов повреждения. 13. Предупредительная защита - функция, выполняемая управляющей системой нормальной эксплуатации блока АС, для предотвращения срабатывания аварийной защиты и (или) нарушений пределов и условий безопасной эксплуатации. 14. Привод СУЗ - устройство, предназначенное для изменения положения механического рабочего органа СУЗ и его удержания в фиксированном положении. 15. Рабочий орган АЗ - средство воздействия на реактивность, используемое в АЗ. 16. Рабочий орган СУЗ - средство воздействия на реактивность, используемое в СУЗ. 17. Разгерметизация твэла - повреждение твэла с нарушением целостности оболочки твэла типа газовой неплотности или прямого контакта ядерного топлива с теплоносителем. 18. Разрушение твэла - нарушение целостности конструкции твэла, в результате которой твэл утрачивает геометрию, обеспечивающую его проектное охлаждение. 19. Реакторная установка - комплекс систем и элементов АС, предназначенный для преобразования ядерной энергии в тепловую, включающий реактор и непосредственно связанные с ним системы, необходимые для его нормальной эксплуатации, аварийного охлаждения, аварийной защиты и поддержания в безопасном состоянии при условии выполнения требуемых вспомогательных и обеспечивающих функций другими системами АС. Границы РУ устанавливаются для каждой АС в проекте. 20. Сигнал АЗ - сигнал, формируемый в комплекте аппаратуры АЗ с целью инициировать срабатывание рабочих органов АЗ и поступающий в средства регистрации, а также на БПУ и РПУ для оповещения персонала. 21. Сигнал ПЗ - сигнал, формируемый и регистрируемый системами контроля и управления для инициирования функций ПЗ и оповещения персонала о возможных нарушениях нормальной эксплуатации. 22. Система остановки реактора - система, предназначенная для перевода реактора в подкритическое состояние и поддержания его в подкритическом состоянии с помощью средств воздействия на реактивность. 23. Система управления и защиты - совокупность средств технического, программного и информационного обеспечения, предназначенных для обеспечения безопасного протекания цепной ядерной реакции деления. Система управления и защиты - система, важная для безопасности, совмещающая функции нормальной эксплуатации и безопасности и состоящая из элементов управляющих систем нормальной эксплуатации, защитных, управляющих и обеспечивающих систем безопасности. 24. Средства воздействия на реактивность - технические средства, реализуемые в виде твердых, жидких или газообразных поглотителей (замедлителей, отражателей), изменением положения или состояния которых в активной зоне или отражателе обеспечивается изменение реактивности активной зоны реактора. 25. Тепловыделяющая сборка - машиностроительное изделие, содержащее ядерные материалы и предназначенное для получения тепловой энергии в ядерном реакторе за счет осуществления контролируемой ядерной реакции. 26. Тепловыделяющий элемент (твэл) - отдельная сборочная единица, содержащая ядерные материалы и предназначенная для получения тепловой энергии в ядерном реакторе за счет осуществления контролируемой ядерной реакции деления и (или) для накопления нуклидов. 27. Тяжелое повреждение активной зоны реактора - запроектная авария с повреждением твэлов выше максимального проектного предела, при которой может быть превышен предельно допустимый аварийный выброс радиоактивных веществ в окружающую среду. 28. Указатель положения рабочего органа СУЗ - устройство для определения положения рабочего органа СУЗ в активной зоне реактора. 29. Эквивалентная степень окисления оболочки - отнесенная к начальной толщине оболочки суммарная толщина эквивалентного слоя, который прореагировал бы с водяным паром в предположении, что весь местно-поглощенный кислород пошел на образование стехиометрического диоксида циркония ZrО 2 . В случае разгерметизации оболочки учитывается окисление как наружной, так и внутренней поверхности оболочки.

1. Назначение и область применения

1.1. Настоящие Правила ядерной безопасности реакторных установок атомных станций распространяются на все проектируемые, конструируемые, сооружаемые и эксплуатируемые АС. 1.2. Настоящие Правила устанавливают требования к конструкции, характеристикам и условиям эксплуатации систем и элементов РУ, а также организационные требования, направленные на обеспечение ядерной безопасности при проектировании, конструировании, сооружении и эксплуатации РУ и АС. 1.3. Настоящие Правила разработаны на основе требований общих положений обеспечения безопасности АС, а также опыта проектирования, конструирования, сооружения и эксплуатации АС и конкретизируют требования общих положений обеспечения безопасности АС в части обеспечения ядерной безопасности РУ и АС, за исключением требований к хранению и транспортированию ядерного топлива. 1.4. Ядерная безопасность РУ и АС определяется техническим совершенством проектов, требуемым качеством изготовления, монтажа, наладки и испытаний элементов и систем, важных для безопасности, их надежностью при эксплуатации, диагностикой технического состояния оборудования, качеством и своевременностью проведения технического обслуживания и ремонта оборудования, контролем и управлением технологическими процессами при эксплуатации, организацией работ, квалификацией и дисциплиной персонала. 1.5. Ядерная безопасность РУ и АС обеспечивается системой технических и организационных мер, предусмотренных концепцией глубокоэшелонированной защиты, в том числе за счет: - использования и развития свойств внутренней самозащищенности; - использования систем безопасности, построенных на основе принципов независимости, разнообразия и резервирования; единичного отказа; - использования надежных, проверенных практикой технических решений и обоснованных методик, расчетных анализов и экспериментальных исследований; - выполнения требований нормативных документов по безопасности РУ и АС, соблюдения требований проектов РУ и АС; - устойчивости технологических процессов; - реализации систем обеспечения качества на всех этапах создания и эксплуатации АС; - формирования и внедрения культуры безопасности на всех этапах создания и эксплуатации АС.

2. Требования обеспечения ядерной безопасности, предъявляемые к реактору и другим системам, важным для безопасности

2.1. Общие требования

2.1.1. Проектирование, сооружение и эксплуатация блока АС, а также конструирование и изготовление элементов РУ и АС должны осуществляться с соблюдением требований действующих нормативных документов по безопасности АС. 2.1.2. Сооружению АС должна предшествовать разработка проекта РУ и проекта АС. В проектах РУ и АС должны быть определены системы, важные для безопасности, их основные характеристики, надежность, срок службы, а также порядок их функционирования, условия эксплуатации, средства контроля и диагностики этих систем. 2.1.3. Изменение состава, конструкции и (или) характеристик РУ и ее систем, важных для безопасности, а также условий эксплуатации АС не может быть выполнено без внесения соответствующих изменений в проекты РУ и АС. 2.1.4. При разработке проекта РУ и (или) при модернизации активной зоны реактора с использованием новых конструкций ТВС, новых композиций ядерного топлива, совершенствовании СУЗ и других систем, важных для безопасности, должны быть выполнены необходимые стендовые и реакторные исследования. В проекте РУ должна быть показана достаточность проведенных исследований для доказательства выполнения критериев безопасности. 2.1.5. Для всех этапов жизненного цикла РУ и АС должны быть разработаны программы обеспечения качества. 2.1.6. В целях поддержания и подтверждения проектных характеристик системы (элементы) РУ и АС, важные для безопасности, должны проходить контроль и испытания в процессе изготовления, монтажа и наладки, а также периодическую проверку в процессе эксплуатации. Проектами РУ и АС должны быть предусмотрены устройства, методики и периодичность проверок систем, важных для безопасности, на соответствие их проектным характеристикам, включая комплексное опробование (последовательности и времени прохождения сигналов, в том числе срабатывания АЗ, перехода на аварийные источники питания, обеспечения функций безопасности и т.д.). Проектами РУ и АС должны быть определены перечни систем и элементов, работоспособность и характеристики которых проверяются на работающем или остановленном реакторе, с указанием состояния РУ и систем РУ и АС, важных для безопасности. Устройства и методики проверки систем РУ и АС, важных для безопасности, и их элементов не должны влиять на безопасность АС. 2.1.7. Основным документом по обоснованию ядерной безопасности РУ является отчет по обоснованию безопасности АС (соответствующие разделы ООБ АС). Для АС, ООБ которых не разрабатывался, таким документом является действующее техническое обоснование безопасности (ТОБ) или отчет по углубленной оценке безопасности (ОУОБ). Разработка ООБ АС осуществляется эксплуатирующей организацией при соблюдении соответствия ООБ АС проектам РУ и АС. 2.1.8. В проектах РУ и АС должны быть установлены и представлены в ООБ АС перечень исходных событий проектных аварий и перечень запроектных аварий, классификация проектных и запроектных аварий по частоте возникновения и по тяжести последствий, а также анализ проектных и запроектных аварий и их последствий. В числе запроектных аварий необходимо рассмотреть аварии с тяжелым повреждением активной зоны. 2.1.9. При проектировании РУ следует стремиться к тому, чтобы оцененное на основе вероятностного анализа безопасности значение суммарной частоты тяжелого повреждения активной зоны не превышало 10 -5 на реактор в год. 2.1.10. Проекты РУ и АС должны содержать анализ возможных отказов систем (элементов), важных для безопасности, с выделением опасных для РУ и АС отказов и оценкой их последствий на основе вероятностного и детерминистического анализа безопасности. 2.1.11. В проектах РУ и АС должны быть приведены и обоснованы эксплуатационные пределы и условия, пределы и условия безопасной эксплуатации, а также проектные пределы, установленные для проектных аварий. 2.1.12. В проектах РУ и АС каждой проектной аварии или группе аварий должны быть поставлены в соответствие проектные пределы для проектных аварий, которые не должны превышаться с учетом действия систем безопасности. 2.1.13. В проектах РУ и АС должно быть показано, что для проектных аварий с наиболее тяжелыми последствиями не превышается максимальный проектный предел повреждения твэлов. Для остальных проектных аварий проектные пределы повреждения твэлов должны устанавливаться проектом РУ и иметь значения, меньшие максимального проектного предела повреждения твэлов. Пределы повреждения твэлов для АС с наиболее распространенными типами РУ приведены в приложении. Для проектируемых АС с другими типами РУ такие пределы должны быть обоснованы в проектах РУ и АС. 2.1.14. В проектах РУ и АС должен быть приведен перечень ядерно-опасных работ. 2.1.15. В проектах РУ и АС должны быть представлены перечни методик и программ, применяемых при обосновании безопасности и используемых в системах важных для безопасности. Используемые программы и методики должны быть верифицированы и аттестованы по установленным процедурам.

2.2. Активная зона реактора и элементы ее конструкции

2.2.1. Активная зона реактора должна быть спроектирована так, чтобы любые изменения реактивности при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не приводили к нарушению соответствующих пределов повреждения твэлов. Требования к коэффициентам реактивности реакторов АС с наиболее распространенными типами РУ приведены в приложении. 2.2.2. В проекте РУ должно быть показано, что при проектных авариях, связанных с быстрым увеличением реактивности, усредненная по поперечному сечению топливной таблетки (среднерадиальная) энтальпия топлива должна быть не выше предельного значения, устанавливаемого в проекте на основе экспериментальных данных, а также исключено разрушение твэлов и ТВС. Для запроектных аварий должны быть приведены условия, при которых возможно разрушение части твэлов и ТВС. 2.2.3. В проекте РУ должно быть установлено соответствие между пределами повреждения твэлов и активностью теплоносителя первого контура по реперным радионуклидам с учетом эффективности систем очистки теплоносителя. 2.2.4. Для обоснования выполнения требований к непревышению пределов безопасной эксплуатации по повреждению твэлов при нарушениях нормальной эксплуатации в проекте РУ должен быть выполнен анализ теплотехнической надежности активной зоны с обоснованием достаточности предусмотренных проектом РУ запасов. 2.2.5. Окисление оболочек твэлов в процессе эксплуатации РУ не должно приводить к их чрезмерному охрупчиванию. В проекте РУ должна быть обоснована (на основе экспериментальных данных) и приведена эквивалентная степень окисления оболочки твэлов при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии. 2.2.6. Для реакторов на быстрых нейтронах с натриевым теплоносителем должно быть показано, что при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, образование пустот в натриевом теплоносителе исключено. 2.2.7. Конструкция и исполнение активной зоны и ее элементов, включая ТВС и твэлы, должны быть такими, чтобы при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не превышались соответствующие пределы повреждения твэлов с учетом: - проектных режимов работы РУ, их количества и проектного протекания; - силового (механического), теплового и радиационного воздействия на компоненты активной зоны; - физико-химического взаимодействия материалов активной зоны и теплоносителя; - предельных отклонений конструктивных, технологических характеристик и параметров процессов; - ударных и вибрационных воздействий, термоциклического нагружения, радиационной и температурной ползучести, а также старения материалов; - влияния продуктов деления и примесей в теплоносителе на прочность и коррозионную стойкость твэлов; - других факторов, ухудшающих механические характеристики материалов активной зоны и целостность оболочек твэлов. 2.2.8. В проекте РУ и АС должна быть обоснована и обеспечена проектными техническими средствами возможность выгрузки поврежденных компонентов активной зоны после проектной аварии. 2.2.9. Активная зона и исполнительные механизмы СУЗ должны быть спроектированы так, чтобы исключались заклинивание, выброс рабочих органов или их самопроизвольное расцепление с приводами СУЗ. 2.2.10. В проекте РУ должно быть показано, что при непредусмотренном перемещении наиболее эффективных одного или группы рабочих органов СУЗ не происходит повреждение твэлов с нарушением пределов безопасной эксплуатации с учетом срабатывания АЗ без одного наиболее эффективного рабочего органа АЗ. 2.2.11. При нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, должна исключаться возможность непредусмотренных перемещений и (или) деформаций элементов активной зоны, вызывающих увеличение реактивности и ухудшение теплоотвода, приводящих к повреждению твэлов сверх соответствующих проектных пределов. 2.2.12. В проектах РУ и АС должно быть показано и обосновано, что при сейсмических воздействиях, свойственных площадке блока АС, обеспечивается беспрепятственный ввод в активную зону рабочих органов регулирования и АЗ, а также надежный теплоотвод от активной зоны. 2.2.13. Характеристики активной зоны и средств воздействия на реактивность должны быть такими, чтобы введение в активную зону и (или) отражатель средств воздействия на реактивность для любой комбинации их расположения при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, обеспечивало ввод отрицательной реактивности на любом участке их движения. 2.2.14. Конструкция ТВС должна быть такой, чтобы формоизменения твэлов и других элементов ТВС, возможные при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не вызывали перекрытие проходного сечения ТВС, приводящее к повреждению твэлов сверх соответствующих пределов, и не препятствовали нормальному функционированию рабочих органов СУЗ. 2.2.15. Конструкция ТВС должна иметь отличительные знаки, характеризующие нуклидный состав и обогащение ядерного топлива в твэлах, которые различаются визуально и (или) с помощью устройств перегрузки. 2.2.16. Твэлы различного обогащения, с выгорающим поглотителем в топливе, со смешанным топливом и т.п., специальные выгорающие поглотители в составе ТВС должны иметь отличительные знаки, которые различаются визуально и (или) с помощью промышленных средств контроля при сборке ТВС. 2.2.17. В проектах РУ и АС должны быть предусмотрены технические средства и методы контроля герметичности оболочек твэлов на остановленном и (или) работающем реакторе, которые должны обеспечивать надежное и своевременное обнаружение негерметичных ТВС (твэлов), и установлены критерии для отбраковки негерметичных твэлов (ТВС). В проекте РУ и АС должны быть приведены и обоснованы методики, используемые для контроля герметичности оболочек твэлов на остановленном и (или) работающем реакторе.

2.3. Системы управления и защиты

2.3.1. Общие требования

2.3.1.1. В состав РУ должны входить системы управления и защиты, предназначенные: - для управления реактивностью активной зоны реактора и мощностью РУ; - для контроля плотности нейтронного потока (мощности), скорости его изменения, технологических параметров, необходимых для защиты и управления реактивностью активной зоны реактора и мощностью РУ; - для перевода реактора в подкритическое состояние и поддержания его в подкритическом состоянии. 2.3.1.2. Состав, структура, характеристики и порядок работы СУЗ должны быть обоснованы в проекте РУ. Проект РУ должен содержать количественный анализ надежности, в котором должно быть представлено, что показатели надежности СУЗ соответствуют требованиям нормативных документов, регламентирующих такие показатели. 2.3.1.3. Проект РУ должен содержать анализ реакций СУЗ на внешние и внутренние воздействия (пожары, землетрясения, затопления, электромагнитные наводки и т.д.), на возможные неисправности и отказы (короткие замыкания, потерю качества изоляции, падение и наводки напряжения, ложные срабатывания, потери управления и т.д.), доказывающий отсутствие опасных для РУ реакций. В случае выявления в процессе эксплуатации опасных для РУ реакций СУЗ, РУ должна быть остановлена и приняты меры по их исключению. Эксплуатирующая организация в установленном порядке должна обеспечить внесение соответствующих изменений в проект РУ. 2.3.1.4. В проекте РУ должны быть предусмотрены по меньшей мере две системы остановки реактора, каждая из которых должна быть способна, независимо одна от другой, обеспечивать перевод реактора в подкритическое состояние и поддержание его в подкритическом состоянии с учетом принципа единичного отказа или ошибки персонала. Эти системы должны проектироваться с соблюдением принципов разнообразия, независимости и резервирования. 2.3.1.5. По крайней мере, одна из систем остановки реактора (не выполняющая функцию АЗ) при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, должна обладать: - эффективностью, достаточной для перевода реактора в подкритическое состояние и поддержания подкритического состояния с учетом возможного высвобождения реактивности; - быстродействием, достаточным для перевода реактора в подкритическое состояние без нарушения проектных пределов повреждения твэлов, установленных для проектных аварий (с учетом действия систем аварийного охлаждения активной зоны). 2.3.1.6. В проекте РУ должны быть определены и обоснованы количество, эффективность, расположение, состав групп, рабочие положения, последовательность и скорости перемещения рабочих органов СУЗ (включая рабочие органы АЗ), а также количество приводов. 2.3.1.7. В проекте РУ должны быть определены и обоснованы методы и условия испытаний, замены и вывода в ремонт рабочих органов СУЗ, их приводов, а также других средств воздействия на реактивность. 2.3.1.8. Исполнительные механизмы СУЗ должны иметь указатели промежуточных положений их рабочих органов, сигнализаторы конечных положений и конечные выключатели, срабатывающие (по возможности) непосредственно от рабочего органа. Другие средства оперативного воздействия на реактивность должны иметь указатели состояний и (или) конечных положений. 2.3.1.9. Если проектом РУ предусмотрено использование при первом физическом пуске реактора дополнительной (к штатной) системы СУЗ, эта система должна соответствовать требованиям раздела 2.3 в части, относящейся к системе СУЗ.

2.3.2. Система аварийной защиты

2.3.2.1. По крайней мере, одна из предусмотренных систем остановки реактора должна выполнять функцию АЗ. 2.3.2.2. В проекте РУ должно быть показано, что системы остановки реактора, выполняющие функцию АЗ, без одного наиболее эффективного рабочего органа обладают: - быстродействием, достаточным для перевода реактора в подкритическое состояние без нарушения пределов безопасной эксплуатации при нарушениях нормальной эксплуатации; - эффективностью, достаточной для перевода реактора в подкритическое состояние и поддержания подкритического состояния реактора при нарушениях нормальной эксплуатации, включая проектные аварии. Если эффективность АЗ недостаточна для длительного поддержания реактора в подкритическом состоянии, в проекте РУ должно быть предусмотрено автоматическое подключение другой (других) системы (систем) остановки реактора, обладающей (обладающих) эффективностью, достаточной для поддержания подкритического состояния реактора с учетом возможного высвобождения положительной реактивности. 2.3.2.3. Аварийная защита должна иметь не менее двух независимых групп рабочих органов. 2.3.2.4. Аварийная защита должна быть спроектирована таким образом, чтобы начавшееся защитное действие было завершено с учетом требований п. 2.3.2.2 и обеспечивался контроль выполнения функции АЗ. 2.3.2.5. В проекте РУ должны быть указаны порядок определения и устранения причин, вызвавших срабатывание аварийной защиты, а также последовательность действий оперативного персонала по восстановлению нормальной эксплуатации РУ после срабатывания АЗ. 2.3.2.6. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений. 2.3.2.7. Если рабочие органы АЗ не приведены в рабочее положение средствами воздействия на реактивность, предусмотренными проектом РУ, должен быть исключен ввод положительной реактивности. Рабочее положение рабочих органов АЗ и порядок их извлечения должны быть определены в проекте РУ. 2.3.2.8. В случае совмещения средствами воздействия на реактивность функций нормальной эксплуатации и аварийной защиты в проекте РУ разрабатывается и обосновывается порядок их функционирования. Должна быть обеспечена приоритетность функционирования АЗ. 2.3.2.9. Структура АЗ должна выбираться из условия выполнения установленных критериев (единичный отказ, отказ по общей причине) и показателей надежности. 2.3.2.10. Аппаратура АЗ должна состоять минимум из двух независимых комплектов. 2.3.2.11. Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 10 -7 % до 120% номинального обеспечивалась защита: - по плотности нейтронного потока - не менее чем тремя независимыми каналами; - по скорости нарастания плотности нейтронного потока - не менее чем тремя независимыми каналами. 2.3.2.12. В случае необходимости разбиения диапазона измерения плотности нейтронного потока на несколько поддиапазонов должно быть предусмотрено перекрытие поддиапазонов измерения не менее чем в пределах одного десятичного порядка в единицах плотности нейтронного потока и автоматическое переключение поддиапазонов. Должна быть предусмотрена возможность подключения регистрирующего устройства к каждому каналу контроля плотности нейтронного потока. 2.3.2.13. Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте РУ, обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту. 2.3.2.14. Аварийный сигнал от каждого комплекта аппаратуры АЗ должен реализовываться на основе мажоритарной логики, которая выбирается на основе анализа надежности, приводимого в проекте РУ. Минимальная мажоритарность равна 2 из 3. Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. 2.3.2.15. Допустимость объединения в каждом комплекте аппаратуры АЗ измерительных частей каналов контроля плотности нейтронного потока с измерительными частями каналов контроля скорости нарастания нейтронного потока должна быть обоснована в проекте РУ. 2.3.2.16. Аварийная защита должна быть в такой мере отделена от УСНЭ, чтобы вывод из работы или отказ любого элемента УСНЭ не влияли на способность аварийной защиты выполнять свои функции. 2.3.2.17. Отказ в канале контроля элементов отображения, регистрации информации и диагностики не должен влиять на способность этого канала выполнять функции аварийной защиты. 2.3.2.18. По каждому из каналов и в целом по комплекту аппаратуры аварийной защиты должна быть предусмотрена возможность проверки формирования и времени прохождения сигналов аварийной защиты без срабатывания рабочих органов АЗ. 2.3.2.19. В системе аварийной защиты должны быть предусмотрены автоматический контроль и диагностика исправности комплектов и каналов аппаратуры аварийной защиты с выводом информации на БПУ об отказах в каналах, а также формирование сигналов АЗ по отказам каналов или комплектов. 2.3.2.20. В проекте РУ должны быть приведены и обоснованы методики метрологической аттестации и поверок аппаратуры АЗ. 2.3.2.21. Допустимость и условия вывода из работы одного комплекта или одного канала в комплекте АЗ (продолжительность, мощность РУ, состояние других комплектов и т.п.) должны быть обоснованы в проекте РУ. 2.3.2.22. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал. 2.3.2.23. Перечень параметров, по которым необходимо осуществлять функции аварийной защиты, уставки и условия срабатывания АЗ, а также время прохождения сигналов до начала срабатывания рабочих органов АЗ должны быть обоснованы в проекте РУ. Уставки и условия срабатывания АЗ должны выбираться таким образом, чтобы предотвращать нарушение пределов безопасной эксплуатации. 2.3.2.24. В проекте РУ должен быть приведен и обоснован перечень исходных событий, при которых требуется срабатывание АЗ. 2.3.2.25. Срабатывание АЗ должно происходить как минимум в следующих случаях: - при достижении уставки АЗ по плотности нейтронного потока; - при достижении уставки АЗ по скорости нарастания плотности нейтронного потока; - при исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ; - при отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ; - при достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту; - при инициировании срабатывания АЗ от ключа с БПУ (РПУ). 2.3.2.26. Допустимость применения предупредительной защиты (защит) при нарушениях нормальной эксплуатации, не требующих срабатывания АЗ, и условия ее (их) применения должны быть обоснованы в проекте РУ. 2.3.2.27. Аварийная защита должна быть спроектирована таким образом, чтобы с помощью технических средств исключалась возможность не предусмотренного проектом РУ и технологическим регламентом безопасной эксплуатации блока АС воздействия на элементы ввода и вывода из работы каналов АЗ и изменения уставок без оповещения персонала и без срабатывания рабочих органов АЗ. 2.3.2.28. Выполнение функции аварийной защиты реактора не должно зависеть от наличия и состояния источников электроснабжения.

2.3.3. Управление нейтронным потоком и реактивностью

2 .3.3.1. Для контроля нейтронного потока реактор должен быть оснащен каналами контроля таким образом, чтобы во всем диапазоне изменения плотности нейтронного потока в активной зоне от 10 -7 % до 120 % номинального значения контроль осуществлялся, как минимум: - тремя независимыми друг от друга каналами измерения плотности нейтронного потока с показывающими приборами; - тремя независимыми друг от друга каналами измерения скорости изменения плотности нейтронного потока. 2.3.3.2. Допустимость объединения измерительных частей каналов контроля плотности нейтронного потока с измерительными частями каналов контроля скорости изменения плотности нейтронного потока должна быть обоснована в проекте РУ. 2.3.3.3. По крайней мере, два из трех каналов контроля плотности нейтронного потока должны быть оснащены записывающими устройствами с возможностью их подключения к любому каналу контроля плотности нейтронного потока. Записывающие устройства должны обеспечивать возможность измерения и записи показаний во всем проектном диапазоне изменения плотности нейтронного потока. 2.3.3.4. Каналы контроля плотности нейтронного потока должны быть оттарированы во всем проектном диапазоне изменения тепловой мощности реактора. В проекте РУ должны быть обоснованы и определены методика и порядок проведения такой тарировки и ее периодичность в процессе эксплуатации блока АС. 2.3.3.5. В случае разбиения диапазона измерения плотности нейтронного потока на несколько поддиапазонов должно быть предусмотрено перекрытие поддиапазонов не менее чем в пределах одного десятичного порядка в единицах измерения плотности нейтронного потока и автоматическое переключение поддиапазонов. 2.3.3.6. Если каналы контроля плотности нейтронного потока, указанные в п. 2.3.3.1. не обеспечивают контроль нейтронного потока при загрузке (перегрузке) активной зоны, то реактор должен быть оснащен дополнительной системой контроля. Дополнительная система контроля может быть съемной, устанавливаемой на период загрузки и перегрузки активной зоны реактора, и должна иметь в составе не менее трех независимых каналов контроля плотности нейтронного потока с показывающими и записывающими устройствами. 2.3.3.7. Для контроля изменения реактивности в проекте РУ должен быть предусмотрен измеритель реактивности с датчиками, устройствами оперативного отображения, регистрации, с автоматическим переключением диапазонов плотности нейтронного потока и реактивности. 2.3.3.8. Методика и погрешности определения реактивности (количество и размещение датчиков, алгоритмы и константы для расчета, погрешности и диапазоны измерения) должны быть обоснованы в проекте РУ. 2.3.3.9. Каналы контроля реактивности должны оснащаться средствами автоматической проверки работоспособности и предупредительной сигнализации о неисправности. 2.3.3.10. В проекте РУ должны быть обоснованы и приведены методики метрологической аттестации и поверок каналов контроля реактивности. 2.3.3.11. В проекте РУ должны быть обоснованы и установлены характеристики системы автоматического регулирования мощности РУ, которые обеспечивают работу РУ без нарушения эксплуатационных пределов. Возможность и допустимое время работы РУ без системы автоматического регулирования мощности, в частности, при ее отказе, а также допустимая мощность РУ при работе в таком режиме должны быть обоснованы в проекте РУ. 2.3.3.12. При включении нескольких измерительных каналов на вход системы автоматического регулирования мощности должно быть предусмотрено устройство для получения сигнала от работающих измерительных каналов, чтобы отключение или отказ одного из этих каналов не вызывали изменение мощности реактора за счет воздействия системы автоматического регулирования. 2.3.3.13. Для РУ, перегрузка ядерного топлива которых осуществляется на остановленном реакторе, техническими мерами должна быть исключена возможность ввода положительной реактивности одновременно двумя и более предусмотренными средствами воздействия на реактивность, а также ввод положительной реактивности средствами воздействия на реактивность при загрузке (выгрузке) ядерного топлива. 2.3.3.14. Скорость увеличения реактивности средствами воздействия на реактивность не должна превышать 0,07 бета эф/с. Для рабочих органов СУЗ с эффективностью более 0,7 бета эф ввод положительной реактивности должен быть шаговым, с эффективностью шага не более 0,3 бета эф (обеспечивается техническими мерами). В проекте РУ должна быть указаны величина шага, пауза между шагами и скорость увеличения реактивности. 2.3.3.15. Перед пуском реактора рабочие органы АЗ должны быть взведены в рабочее положение. Подкритичность реактора в любой момент кампании после взведения рабочих органов АЗ в рабочее положение с введенными в активную зону остальными органами СУЗ должна быть не менее 0,01 в состоянии активной зоны с максимальным эффективным коэффициентом размножения. 2.3.3.16. Отказ канала контроля плотности и (или) скорости изменения плотности нейтронного потока должен сопровождаться сигнализацией оператору и регистрацией. При этом должен формироваться сигнал об отказе такого канала. 2.3.3.17. В проекте РУ должны быть приведены требования к средствам, обеспечивающим при эксплуатации оперативное автоматизированное определение и регистрацию значений текущего запаса реактивности активной зоны реактора и его изменений. В проекте РУ должны быть обоснованы порядок определения суммарной эффективности средств воздействия на реактивность, эффективности рабочих органов аварийной защиты, эффективности групп рабочих органов СУЗ, коэффициентов реактивности по параметрам, влияющим на реактивность (мощность, температура теплоносителя, температура замедлителя, концентрация растворенного поглотителя и т.п.), а также методики определения этих величин и погрешности их определения. 2.3.3.18. В проекте РУ должны предусматриваться средства и методики контроля подкритичности реактора. 2.3.3.19. В проекте РУ должны быть предусмотрены средства контроля неравномерности энерговыделения в активной зоне реактора и средства оперативного расчета запаса до кризиса теплообмена. 2.3.3.20. Для активных зон реактора, для которых не доказано отсутствие колебаний плотности потока нейтронов, в проекте РУ должны быть предусмотрены средства контроля и управления колебаниями плотности потока нейтронов и указан порядок управления колебаниями без нарушения эксплуатационных пределов повреждения твэлов.

2.4. Управляющие системы нормальной эксплуатации и управляющие системы безопасности

2.4.1. В проекте РУ должны быть представлены и обоснованы требования к составу, структуре, основным характеристикам, количеству и условиям размещения УСНЭ, УСБ, их элементов, а также систем диагностики РУ. 2.4.2. В проекте РУ должны быть обоснованы и приведены перечни: - контролируемых параметров и сигналов о состоянии РУ; - регулируемых параметров и управляющих сигналов; - уставок и условий срабатывания ПЗ; - мест размещения датчиков диагностики РУ; - параметров, определяющих ввод в действие систем безопасности. 2.4.3. В проекте РУ должно быть показано, что УСНЭ и УСБ обеспечивают контроль технического состояния и безопасное управление РУ при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии. 2.4.4. В проекте РУ должны быть приведены и обоснованы перечни защит и блокировок оборудования РУ, а также технические требования к условиям их срабатывания. 2.4.5. В УСНЭ и УСБ должны быть предусмотрены устройства формирования как минимум следующих сигналов: - аварийного оповещения (сирена, имеющая отличительный тон сигнала) - в случаях, предусмотренных проектом РУ; - аварийных (световых и звуковых) - при достижении параметрами уставок и условий срабатывания АЗ; - предупредительных (световых и звуковых) - при нарушениях нормальной эксплуатации систем и элементов РУ и достижении параметрами уставок и условий срабатывания ПЗ; - указательных - о наличии напряжения в цепях электроснабжения, о состоянии оборудования. 2.4.6. Должна быть предусмотрена диагностика УСНЭ и УСБ. 2.4.7. УСНЭ и УСБ должны быть спроектированы таким образом, чтобы имелась возможность идентифицировать исходные события аварий, установить фактические алгоритмы работы систем РУ, важных для безопасности, отклонения от штатных алгоритмов и действия оперативного персонала. 2.4.8. С целью реализации требования п. 2.4.7 должна быть предусмотрена регистрация: - параметров и признаков состояния систем (элементов) РУ, позволяющих достоверно определить исходное событие; - управляющих сигналов; - изменений параметров, характеризующих состояния систем РУ, важных для безопасности; - параметров, по которым предусматривается ввод в действие защит; - положения арматуры систем безопасности; - параметров, характеризующих радиационную обстановку; - действий оперативного персонала, включая и видеоинформацию; - переговоров оперативного персонала по системам связи. 2.4.9. В проекте РУ должны быть обоснованы и приведены данные об объеме и интенсивности регистрации и хранении информации, указанной в п. 2.4.8. 2.4.10. Средства регистрации должны сохранять работоспособность и обеспечивать сохранение информации в условиях проектных и запроектных аварий (в устройстве типа "черный ящик"). 2.4.11. В проекте РУ должны быть установлены: - допустимые значения мощности реактора в зависимости от работоспособности УСНЭ при частичной потере функции; - условия вывода в ремонт УСНЭ и УСБ и их частей. 2.4.12. Для регулируемых и контролируемых параметров должны быть обоснованы диапазоны и скорости их изменения при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии. 2.4.13. Элементы УСНЭ и УСБ должны проходить метрологическую экспертизу и аттестацию. 2.4.14. Проект РУ должен содержать анализ реакций УСНЭ и УСБ на внешние и внутренние воздействия, на возможные отказы и неисправности (короткие замыкания, потерю качества изоляции, падение и наводки напряжения, ложные срабатывания, потери сигналов и т.п.) и на отказы основного оборудования РУ, доказывающий отсутствие опасных для РУ реакций. В случае выявления в процессе эксплуатации опасных для РУ реакций УСНЭ и УСБ РУ должна быть остановлена и приняты меры по их исключению. Эксплуатирующая организация в установленном порядке должна обеспечивать внесение соответствующих изменений в проект РУ. 2.4.15. Использование в УСНЭ и УСБ программируемых и программных средств должно быть обосновано и подтверждено испытаниями. Используемые программируемые и программные средства должны быть верифицированы. 2.4.16. Управление РУ и ее системами должно производиться с БПУ и (при необходимости) с местных постов управления. 2.4.17. На каждом блоке, помимо БПУ, должен быть предусмотрен РПУ, с которого должны обеспечиваться перевод реактора в подкритическое состояние и аварийное расхолаживание РУ, а также контроль необходимых для безопасности РУ технологических параметров, если по каким-либо причинам (пожар и т.п.) этого нельзя сделать с БПУ. 2.4.18. Требования к составу оборудования и аппаратуры БПУ, РПУ и местных постов управления должны быть определены в проекте РУ. 2.4.19. На РПУ должна выводиться информация о состоянии систем и отдельных элементов систем, включая как минимум: - плотность нейтронного потока в активной зоне; - параметры теплоносителя и систем, участвующих в аварийном расхолаживании; - указатели промежуточных и конечных положений рабочих органов СУЗ; - указатели состояния средств воздействия на реактивность (состояние арматуры насосов и элементов, однозначно определяющее готовность средств воздействия на реактивность выполнять свои функции и факт их срабатывания, а также параметры состояния раствора жидкого поглотителя (в случае его использования) - температура, давление, концентрация и др.; - указатели положения арматуры и состояния систем, обеспечивающих расхолаживание. 2.4.20. Должна быть исключена возможность вывода из строя цепей управления и контроля БПУ и РПУ по общей причине при учитываемых исходных событиях, а также исключена техническими средствами возможность управления одновременно с БПУ и РПУ по каждому конкретному элементу. 2.4.21. В реакторе, первом контуре, баках аварийного запаса жидкого поглотителя и во всех системах, заполняемых по проекту РУ (АС) раствором жидкого поглотителя, должны быть обеспечены заданные проектом РУ (АС) концентрации раствора жидкого поглотителя. Способ и периодичность измерения концентрации нуклида-поглотителя в растворе жидкого поглотителя должны определяться в проекте РУ (АС). 2.4.22. Должны быть предусмотрены технические средства контроля содержания нуклидов-поглотителей нейтронов в растворе жидкого или в газообразном поглотителях (в случае их использования) в РУ и в емкостях аварийного запаса поглотителя в процессе эксплуатации РУ, а также технические средства для поддержания равномерной концентрации раствора поглотителя в содержащих его емкостях. 2.4.23. Техническими средствами или организационными мерами должен быть обеспечен входной контроль содержания нуклидов-поглотителей нейтронов в материалах, используемых в средствах воздействия на реактивность, на соответствие проектным характеристикам. 2.4.24. Каждая емкость аварийного запаса раствора жидкого поглотителя должна быть оборудована не менее чем двумя каналами контроля уровня и (или) измерения давления с выдачей предупредительного сигнала на БПУ и РПУ. 2.4.25. При нормальной эксплуатации, при нарушениях нормальной эксплуатации, включая проектные аварии (в том числе, режим полного обесточивания) УСНЭ и УСБ должны быть обеспечены надежным электро- и энергоснабжением в объеме, обоснованном в проекте РУ. 2.4.26. В состав УСНЭ должны входить система промышленного телевидения и средства связи с БПУ, РПУ и местными постами управления (телефонная, громкоговорящая связь, радиосвязь и т.п.). 2.4.27. В составе УСНЭ и УСБ должна быть предусмотрена система информационной поддержки оператора. 2.4.28. В УСНЭ и УСБ должны предусматриваться средства передачи информации во внешний и внутренний аварийные центры управления АС в условиях запроектных аварий для оценки ситуации и принятия решений. 2.4.29. В проекте РУ должны быть приведены организационные и (или) технические меры по исключению несанкционированного доступа к УСНЭ и УСБ.

2.5. Контур теплоносителя РУ (первый контур)

2.5.1. В проекте РУ должны быть определены границы первого контура. 2.5.2. В проекте РУ должна быть обоснована надежность эксплуатации элементов и систем первого контура в течение проектного срока службы с учетом физико-химических, тепловых, силовых и других воздействий, возможных при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии. Количество и характер воздействий, учитываемые при определении проектного срока службы, должны быть приведены и обоснованы в проекте РУ. 2.5.3. В проекте РУ должно быть показано, что прочность корпуса реактора при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, обеспечивается в течение всего срока эксплуатации блока АС. 2.5.4. Компоновка оборудования и геометрия первого контура должны обеспечивать условия для развития естественной циркуляции теплоносителя в первом контуре при потере или отсутствии принудительной циркуляции, в том числе при проектных авариях. 2.5.5. Трубопроводы первого контура должны быть оборудованы устройствами контроля и предотвращения недопустимых перемещений при воздействии на них реактивных усилий, возникающих при разрывах. В проекте РУ должны быть обоснованы прочность и эффективность этих устройств при проектных авариях. 2.5.6. Теплообменное оборудование для передачи тепла от первого контура РУ должно иметь запас теплообменной поверхности для компенсации ухудшения ее теплопередающих характеристик в процессе эксплуатации. 2.5.7. В случае использования принудительной циркуляции насосы, осуществляющие эту циркуляцию, при потере их энергоснабжения и при срабатывании АЗ на любом уровне мощности реактора должны обладать достаточной инерцией, которая обеспечивала бы принудительный расход теплоносителя первого контура до момента, когда естественная циркуляция гарантирует отвод остаточного тепловыделения без превышения эксплуатационных пределов повреждения твэлов. 2.5.8. Проектом РУ должны быть предусмотрены средства: - автоматической защиты от недопустимого повышения давления в первом контуре при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии; - компенсации изменений объема теплоносителя, вызванного температурными изменениями; - компенсации потерь теплоносителя при течах. Максимальный расход течи, компенсируемый этими средствами, устанавливается в проекте РУ. 2.5.9. Проектом РУ должна быть предусмотрена установка ограничителей течи на трубопроводах, отходящих от главного циркуляционного трубопровода. Отказ от установки ограничителей течи должен быть обоснован в проекте РУ. 2.5.10. Элементы первого контура должны быть оборудованы устройствами, уменьшающими влияние сейсмических воздействий. Отказ от оборудования такими устройствами элементов первого контура должен быть обоснован в проекте РУ. 2.5.11. В проектах РУ и АС должны быть установлены показатели качества теплоносителя, его химический состав и допустимое содержание радионуклидов в процессе эксплуатации, предусмотрены технические средства и организационные мероприятия по их поддержанию и контролю. Технические решения и организационные мероприятия по обеспечению качества теплоносителя, а также по методам и средствам их контроля должны быть обоснованы в проектах РУ и АС. 2.5.12. Проектом РУ должны быть предусмотрены технические меры по защите первого контура от не предусмотренного технологическим регламентом безопасной эксплуатации блока АС дренирования теплоносителя. Допустимость частичного дренирования при проведении ремонтных работ и перегрузке должна быть обоснована в проекте РУ. 2.5.13. Проектом РУ должны быть предусмотрены средства и способы обнаружения местонахождения и величины течи теплоносителя первого контура с обоснованной в проекте точностью. 2.5.14. Техническими мерами должно быть исключено непредусмотренное попадание чистого конденсата и раствора жидкого поглотителя с концентрацией, менее допустимой по проекту РУ (АС), в теплоноситель первого контура и в другие системы, которые по проекту РУ (АС) должны быть заполнены раствором жидкого поглотителя.

2.6. Системы аварийного охлаждения активной зоны

2.6.1. Проектами РУ и АС должны быть предусмотрены системы аварийного охлаждения активной зоны. Состав, структура и характеристики систем аварийного охлаждения активной зоны должны быть обоснованы в проектах РУ и АС. 2.6.2. Системы аварийного охлаждения активной зоны должны проектироваться с учетом принципов независимости и резервирования и быть способны с учетом принципа единичного отказа или ошибки персонала выполнять функцию предотвращения нарушения проектных пределов повреждения твэлов при проектных авариях. 2.6.3. Перечень параметров, уставки и условия срабатывания систем аварийного охлаждения должны быть обоснованы в проекте РУ (АС) на основе анализа проектных аварий. 2.6.4. Допустимость и условия вывода из работы одного канала системы аварийного охлаждения активной зоны должны быть обоснованы в проекте РУ (АС). 2.6.5. В проекте РУ (АС) должны учитываться все возможные воздействия на системы (элементы), связанные с включением и работой систем аварийного охлаждения активной зоны. 2.6.6. В проекте РУ (АС) должны быть предусмотрены технические и организационные меры по исключению несанкционированного доступа к системам аварийного охлаждения активной зоны. 2.6.7. Проект РУ (АС) должен содержать обоснование показателей надежности систем аварийного охлаждения активной зоны. 2.6.8. При нахождении реактора в подкритическом состоянии включение и работа систем аварийного охлаждения активной зоны не должны выводить его из подкритического состояния. 2.6.9. Системы аварийного охлаждения должны обеспечивать расхолаживание и длительное поддержание активной зоны реактора при значениях параметров теплоносителя, обоснованных в проекте РУ (АС).

2.7. Устройства перегрузки и порядок проведения перегрузки активной зоны

2.7.1. Устройства перегрузки

2.7.1.1. В проекте РУ должны быть обоснованы и приведены состав устройств перегрузки, а также требования к ним, выполнение которых обеспечивает безопасность обращения с ТВС и другими элементами активной зоны при перегрузке, в том числе при отказах и повреждениях устройств перегрузки. 2.7.1.2. Должен быть обеспечен теплосъем с перегружаемых ТВС без превышения температурных параметров твэлов, установленных проектом РУ для операций перегрузки при нормальной эксплуатации и отказах. 2.7.1.3. Устройства перегрузки должны быть спроектированы так, чтобы при их нормальной эксплуатации и отказах не нарушались условия нормальной эксплуатации РУ и приреакторных хранилищ ядерного топлива. 2.7.1.4. В проекте РУ и АС должны быть приведены требования к монтажу, эксплуатации, техническому обслуживанию, ремонту, испытаниям и периодической проверке устройств перегрузки, а также требования к их надежности. 2.7.1.5. Устройства перегрузки должны быть спроектированы (сконструированы) так, чтобы к ним был возможен доступ для проведения инспекций, ремонта, испытаний и технического обслуживания. 2.7.1.6. При проектировании устройств перегрузки должны быть предусмотрены меры, направленные на предотвращение повреждения, деформации, разрушения или падения ТВС и других элементов активной зоны, а также приложения к ним недопустимых усилий при извлечении или установке. Значения предельно допустимых усилий должны быть приведены в проекте РУ. Использование для перегрузки непроектных средств запрещается. 2.7.1.7. При проектировании устройств перегрузки должно быть предусмотрено, чтобы прекращение подачи энергоснабжения не приводило к падению ТВС и других перегружаемых элементов активной зоны. 2.7.1.8. В проекте РУ должны быть обоснованы и установлены допустимые скорости перемещения ТВС и других элементов активной зоны перегрузочными устройствами. 2.7.1.9. Должны быть предусмотрены технические средства (блокировки и т.п.), обеспечивающие перемещение устройств перегрузки в допустимых границах. 2.7.1.10. При отказе или нарушении условий эксплуатации устройств перегрузки проектом РУ должно быть предусмотрено оборудование для надежного перемещения ТВС и других элементов активной зоны в безопасные места. 2.7.1.11. В устройствах перегрузки должны быть предусмотрены пульты (панели) с показывающими приборами для представления информации о положении (состоянии) и ориентации ТВС, других перегружаемых элементов активной зоны и захватов. 2.7.1.12. Должна быть исключена возможность перемещения устройств перегрузки в момент соединения с технологическим каналом или во время ввода ТВС и других перегружаемых элементов в активную зону (извлекаемых из активной зоны). 2.7.1.13. Для предотвращения перемещения устройств перегрузки при нахождении ТВС и других перегружаемых элементов активной зоны в непроектном положении должны быть предусмотрены блокировки. 2.7.1.14. Для контроля перегрузки должна быть предусмотрена система промышленного телевидения. В проектах РУ и АС должен быть определен перечень операций при перегрузке, контролируемых с использованием системы промышленного телевидения.

2.7.2. Порядок проведения перегрузки

2.7.2.1. В проекте РУ должны быть обоснованы: - способы проведения перегрузки; - периодичность, объем и регламент перегрузки; - технические средства и организационные меры по обеспечению ядерной безопасности при проведении перегрузки, включая контроль плотности потока нейтронов; - рабочая концентрация раствора жидкого поглотителя (в случае его использования), точки отбора проб, средства ее контроля и способы поддержания. 2.7.2.2. В проектах РУ и АС, а также в ООБ АС в качестве исходных событий, помимо отказов оборудования системы перегрузки, должны быть рассмотрены возможные ошибки при загрузке (перегрузке) и их последствия, а также разработаны мероприятия по исключению ошибок. 2.7.2.3. Порядок проведения перегрузки активной зоны определяется программой и (или) инструкцией по перегрузке, рабочим графиком и картограммами перегрузки, составленными персоналом АС, утвержденными администрацией АС и согласованными в установленном порядке. 2.7.2.4. При проведении перегрузочных и ремонтных работ организационными мероприятиями и по возможности техническими средствами должно предотвращаться попадание посторонних предметов во внутреннее пространство оборудования, арматуры и трубопроводов РУ. 2.7.2.5. В реакторах, где перегрузка осуществляется с расцеплением рабочих органов СУЗ, перегрузка должна проводиться при введенных в активную зону рабочих органах СУЗ и других средствах воздействия на реактивность. Минимальная подкритичность реактора в процессе перегрузки с учетом возможных ошибок должна составлять не менее 0,02. 2.7.2.6. В реакторах, где перегрузка осуществляется с расцеплением рабочих органов СУЗ и реактивность компенсируется раствором жидкого поглотителя, перегрузка должна проводиться при введенных в активную зону рабочих органах СУЗ и других средствах воздействия на реактивность. Концентрация раствора жидкого поглотителя должна быть доведена до значения, при котором (с учетом возможных ошибок) обеспечивается подкритичность реактора не менее 0,02 (без учета введенных рабочих органов СУЗ). 2.7.2.7. В реакторах, в которых при перегрузках требуемая подкритичность обеспечивается раствором жидкого поглотителя, должны быть предусмотрены технические средства и организационные меры, гарантирующие при перегрузках исключение подачи чистого конденсата в реактор и в первый контур. 2.7.2.8. В реакторах корпусного типа с верхним расположением приводов СУЗ конструкция реактора и исполнительных механизмов СУЗ должна обеспечивать расцепленное состояние рабочих органов СУЗ при снятии верхнего блока. Средства диагностики должны регистрировать расцепленное состояние. 2.7.2.9. В проекте РУ должны быть предусмотрены технические меры, исключающие "всплытие" рабочих органов СУЗ при перегрузках. 2.7.2.10. Перегрузка ТВС и других элементов активной зоны на остановленном реакторе канального типа должна проводиться при взведенных рабочих органах АЗ. Минимальная подкритичность реактора в процессе перегрузки с учетом возможных ошибок должна составлять не менее 0,02. 2.7.2.11. Для РУ, на которых перегрузка проводится при работе реактора на мощности, в проекте РУ должны быть обоснованы и определены допустимые эксплуатационные режимы работы (мощность, расход теплоносителя и др.) в процессе перегрузки. Должна быть обоснована эффективность средств, используемых для подавления избыточной реактивности, ввод которой возможен из-за ошибок при загрузке или из-за эффектов реактивности. 2.7.2.12. В процессе проведения перегрузки при работе реактора на мощности не должна нарушаться герметичность первого контура, а также должны быть предусмотрены средства для проверки отсутствия утечек теплоносителя из первого контура. 2.7.2.13. Для реакторов с частичной перегрузкой после завершения перегрузки должны быть проведены испытания (измерения) по подтверждению основных проектных и расчетных нейтронно-физических характеристик активной зоны. Для реакторов с непрерывной перегрузкой периодичность испытаний (измерений) должна быть обоснована в проекте РУ. В процессе испытаний должно проверяться соответствие экспериментальных результатов измерений расчетным параметрам по критериям, установленным в проекте РУ.

3. Обеспечение ядерной безопасности при вводе блока АС в эксплуатацию

3.1. Физический пуск реактора

3.1.1. В процессе физического пуска должны быть получены экспериментальные данные о нейтронно-физических параметрах реактора, эффектах реактивности, эффективности органов регулирования и АЗ и др. 3.1.2. Физический пуск реактора, включая загрузку реактора ядерным топливом, осуществляется в соответствии с программой физического пуска. Программа физического пуска разрабатывается и утверждается эксплуатирующей организацией. 3.1.3. Программа физического пуска реактора должна содержать: - перечень систем и оборудования, необходимых для проведения физического пуска реактора; - порядок проведения загрузки реактора ТВС (твэлами); - порядок достижения критического состояния; - описание испытаний (измерений) и порядок их проведения; - ожидаемые значения критических загрузок, критических положений (состояний) органов воздействия на реактивность, их эффективность, оценки влияния на реактивность загружаемых ТВС (твэлов), теплоносителя; - методики проведения испытаний и измерений; - меры по обеспечению ядерной безопасности при проведении физического пуска. 3.1.4. Проверка готовности к физическому пуску реактора осуществляется: - рабочей комиссией, назначаемой эксплуатирующей организацией; - комиссией органа государственного регулирования безопасности при использовании атомной энергии. 3.1.5. Рабочая комиссия проверяет: - соответствие выполненных работ проектам РУ и АС; - работоспособность оборудования, наличие протоколов испытаний оборудования, актов об окончании предпусковых наладочных работ; - наличие и оформление эксплуатационной документации; - наличие разрешений на право работы у сменного персонала и протоколов сдачи экзаменов контролирующими физиками. Рабочая комиссия составляет акт о готовности систем, оборудования и подготовленности персонала к проведению физического пуска. Акт должен быть утвержден эксплуатирующей организацией в установленном порядке. 3.1.6. Комиссия органа государственного регулирования безопасности при использовании атомной энергии проверяет: - техническую готовность блока АС к физическому пуску: - проектную и эксплуатационную документацию; - подготовленность персонала к проведению физического пуска. 3.1.7. Первый завоз ядерного топлива на площадку вводимого в эксплуатацию блока АС может быть осуществлен при наличии лицензии органа государственного регулирования безопасности при использовании атомной энергии на эксплуатацию блока АС и по результатам инспекции органа государственного регулирования безопасности при использовании атомной энергии готовности блока АС к завозу ядерного топлива. 3.1.8. Решение о проведении физического пуска принимается в установленном порядке на основании акта рабочей комиссии о готовности систем и оборудования, подготовленности персонала к физическому пуску, а также акта эксплуатирующей организации об устранении недостатков по результатам инспекции органа государственного регулирования безопасности при использовании атомной энергии готовности блока АС к физическому пуску. 3.1.9. В случае возникновения предаварийной ситуации при проведении испытаний (измерений) во время физического пуска испытания (измерения) должны быть прекращены, а реактор переведен в подкритическое состояние. 3.1.10. Результаты загрузки активной зоны реактора ТВС (твэлами), а также результаты испытаний во время физического пуска должны оформляться актами и отчетами, которые должны представляться в орган государственного регулирования безопасности при использовании атомной энергии в установленном порядке.

3.2. Энергетический пуск блока АС

3.2.1. Энергетический пуск блока АС включает поэтапный и постепенный подъем мощности, определение и уточнение параметров РУ и блока АС, комплексное опробование систем и оборудования блока АС, проведение на каждом этапе запланированных испытаний (измерений) и анализ полученных результатов. 3.2.2. Энергетический пуск блока АС осуществляется в соответствии с программой энергетического пуска блока АС, откорректированной (при необходимости) по результатам физического пуска. Программа энергетического пуска разрабатывается и утверждается эксплуатирующей организацией. 3.2.3. Программа энергетического пуска должна содержать порядок его проведения, ожидаемые значения нейтронно-физических характеристик реактора (эффектов реактивности и др.), теплотехнических характеристик РУ, методики проведения испытаний, меры по обеспечению ядерной безопасности при проведении энергетического пуска и т.п. 3.2.4. Программа энергетического пуска должна предусматривать испытания и отработку режимов работы энергоблока АС, проверку систем безопасности в объеме и последовательности, обеспечивающих безопасный вывод реактора на номинальный уровень мощности, включая отработку безопасного и динамически устойчивого прохождения переходных режимов на всех этапах освоения мощности. 3.2.5. Проверка готовности блока АС к энергетическому пуску осуществляется рабочей комиссией. Рабочая комиссия проверяет готовность систем и оборудования блока АС к энергетическому пуску, выводу реактора на мощность, пуску турбогенераторов и включению блока АС в энергосеть, укомплектованность сменным персоналом, его подготовку и допуск к работе. Комиссия составляет акт о готовности блока АС к энергетическому пуску. Акт должен быть утвержден эксплуатирующей организацией в установленном порядке. В случае необходимости органом государственного регулирования безопасности при использовании атомной энергии направляется комиссия для проверки готовности блока АС к энергетическому пуску. 3.2.6. Энергетический пуск блока АС осуществляется после устранения недостатков, отмеченных в акте рабочей комиссии и в акте комиссии органа государственного регулирования безопасности при использовании атомной энергии (в случае проверки комиссией органа государственного регулирования безопасности при использовании атомной энергии). 3.2.7. Решение о проведении энергетического пуска принимается в установленном порядке на основании акта рабочей комиссии о готовности блока АС к энергетическому пуску, а также акта эксплуатирующей организации об устранении недостатков по результатам проверки комиссией органа государственного регулирования безопасности при использовании атомной энергии (в случае ее проведения) готовности блока АС к энергетическому пуску. 3.2.8. По результатам физического и энергетического пуска эксплуатирующей организацией должен быть выпущен отчет и откорректирован (при необходимости) ООБ АС.

4. Обеспечение ядерной безопасности при эксплуатации

4.1. Основным документом, определяющим безопасную эксплуатацию блока АС, является технологический регламент безопасной эксплуатации блока АС, содержащий правила и основные приемы безопасной эксплуатации, общий порядок выполнения операций, связанных с безопасностью, а также пределы и условия безопасной эксплуатации. Эксплуатирующая организация обеспечивает разработку технологического регламента безопасной эксплуатации блока АС. 4.2. Эксплуатация блока АС должна проводиться в соответствии с инструкциями по эксплуатации, разработанными администрацией АС на основании проектно-конструкторской документации и технологического регламента безопасной эксплуатации блока АС, откорректированных по результатам ввода в эксплуатацию АС и с учетом опыта эксплуатации. 4.3. До начала эксплуатации блока АС эксплуатирующей организацией должен быть оформлен паспорт реакторной установки. 4.4. Эксплуатирующая организация на основе проектов РУ и АС с учетом требований технологического регламента безопасной эксплуатации блока АС организует разработку и выпуск для систем, важных для безопасности: - инструкций по проведению проверок и испытаний; - графиков проведения технического обслуживания, планово-предупредительных и капитальных ремонтов систем и элементов; - графиков проведения испытаний и проверок функционирования систем безопасности. 4.5. Состояние РУ и ее систем и условия, при которых разрешается эксплуатация блока АС, должны быть обоснованы в проектах РУ и АС и приведены в технологическом регламенте безопасной эксплуатации блока АС. 4.6. При нарушении эксплуатационных пределов оперативным персоналом должна быть выполнена последовательность действий, установленная в проекте РУ (АС) и технологическом регламенте безопасной эксплуатации блока АС и направленная на приведение блока АС к нормальной эксплуатации. В случае невозможности восстановления нормальной эксплуатации блок АС должен быть остановлен. 4.7. При возникновении предаварийной ситуации (аварии) блок АС должен быть остановлен, должны быть выяснены и устранены причины ее возникновения и приняты меры по восстановлению нормальной эксплуатации блока АС. Эксплуатация блока АС может быть продолжена только после устранения причин возникновения предаварийной ситуации (аварии). 4.8. Эксплуатирующая организация должна расследовать происшествия и аварии на АС в соответствии с федеральными нормами и правилами, а также передавать информацию об этих нарушениях в установленном в федеральных нормах и правилах порядке. 4.9. При проектных авариях действия персонала должны определяться инструкцией по ликвидации аварий на блоке АС, разрабатываемой эксплуатирующей организацией на основе ООБ АС. В инструкции должны быть рассмотрены проектные аварии и разработаны меры по ликвидации их последствий. 4.10. Для управления запроектными авариями в соответствии с проектами РУ и АС и ООБ АС эксплуатирующей организацией должно быть разработано руководство по управлению запроектными авариями. 4.11. В инструкции по ликвидации аварий на блоке АС и в руководстве по управлению запроектными авариями должен быть указан порядок ввода в действие планов мероприятий по защите персонала и населения в случае возникновения запроектной аварии. 4.12. Для подготовки персонала АС к действиям при предаварийных ситуациях и авариях должны проводиться противоаварийные тренировки. Периодичность и порядок их проведения утверждаются эксплуатирующей организацией. 4.13. С момента возникновения аварии и до начала работы комиссии по выявлению причин аварии запрещается вскрывать контрольно-измерительную аппаратуру и устройства, менять уставки аварийной и предупредительной сигнализации и защиты. Должны быть предусмотрены технические средства и организационные меры, исключающие возможность утраты зарегистрированной информации и несанкционированного доступа к устройствам и элементам, базам данных и архивам системы управления, в которых зафиксировано состояние оборудования и систем перед возникновением аварии и в последующий период. 4.14. В проекте РУ должны быть обоснованы и в технологическом регламенте безопасной эксплуатации блока АС приведены условия безопасной эксплуатации остановленного реактора с ядерным топливом в активной зоне, включая режимы загрузки и перегрузки. Для этих режимов должны быть определены как минимум: - объем контроля в соответствии с требованиями пп. 2.3.3.1, 2.3.3.3 и 2.3.3.6 настоящих Правил с обязательным контролем плотности нейтронного потока и концентрации раствора жидкого поглотителя, если он применяется для данного типа РУ; - требования к готовности систем, важных для безопасности. 4.15. В реакторах, в которых загрузка и перегрузка ядерного топлива выполняются при заполнении раствором жидкого поглотителя реактора, первого контура и связанных с ним систем, концентрация раствора жидкого поглотителя при операциях загрузки и перегрузки реактора, а также при испытаниях оборудования, арматуры и трубопроводов первого контура и при ремонтных работах должна быть не ниже определенной проектом РУ (АС). 4.16. Эксплуатирующая организация на основе проектной документации, проектного перечня ядерно-опасных работ и опыта эксплуатации должна разрабатывать перечень ядерно-опасных работ блока АС. 4.17. Работы с системами (элементами), важными для безопасности, по выводу в ремонт и вводу в эксплуатацию, а также испытания этих систем (элементов), не предусмотренные технологическим регламентом безопасной эксплуатации блока АС и инструкциями по эксплуатации, являются ядерно-опасными. 4.18. Ядерно-опасные работы должны проводиться по специальной рабочей программе, утверждаемой административным руководством АС. Ядерно-опасные работы, не предусмотренные технологическим регламентом безопасной эксплуатации блока АС и инструкциями по эксплуатации, должны проводиться по специальной рабочей программе, утверждаемой эксплуатирующей организацией при согласовании разработчиками проекта РУ и АС. Рабочая программа должна содержать: - цель проведения ядерно-опасных работ; - перечень ядерно-опасных работ; - технические и организационные меры по обеспечению ядерной безопасности; - критерии и контроль правильности завершения ядерно-опасных работ; - указание о назначении ответственного лица за проведение ядерно-опасных работ. Ядерно-опасные работы должны проводиться, как правило, на остановленном реакторе. 4.19. Подкритичность остановленного реактора при проведении ядерно-опасных работ должна быть не менее 0,02 для состояния реактора с максимальным запасом реактивности (для реакторов канального типа рабочие органы АЗ должны быть взведены, а остальные рабочие органы СУЗ введены в активную зону). 4.20. После завершения ремонта оборудования и систем, важных для безопасности, должна быть проведена проверка характеристик этих систем на соответствие проектным характеристикам. Проверка должна проводиться в соответствии с действующими инструкциями или по программам, разработанным в порядке, установленном эксплуатирующей организацией АС. 4.21. При любых испытаниях систем, важных для безопасности, должна проводиться проверка соответствия результатов испытаний критериям, установленным в проектах РУ и АС. Результаты испытаний должны оформляться актом.

5. Контроль соблюдения правил

5.1. Эксплуатирующая организация должна постоянно контролировать соблюдение требований настоящих Правил. 5.2. Эксплуатирующая организация организовывает периодические (не реже одного раза в два года) проверки соблюдения АС требований настоящих Правил и устанавливает порядок проверок состояния ядерной безопасности АС внутренними комиссиями. Результаты проверок, проводимых эксплуатирующей организацией, представляются органу государственного регулирования безопасности при использовании атомной энергии.

Приложение
к Правилам ядерной безопасности
реакторных установок атомных станций
Пределы повреждения твэлов и требования к коэффициентам реактивности реакторов АС с наиболее распространенными типами РУ

1. АС с РУ типа ВВЭР

1.1. 1.2. - прямой контакт ядерного топлива с теплоносителем - не более 0,1 % от числа твэлов в активной зоне. 1.3. - эквивалентная степень окисления оболочек твэлов должна быть не более предельного значения, устанавливаемого в проекте на основе экспериментальных данных; - доля прореагировавшего циркония в активной зоне должна быть не более 1 % его массы в оболочках твэлов; 1.4. Значения коэффициентов реактивности по удельному объему теплоносителя и температуре топлива, по мощности реактора, суммарного коэффициента реактивности по температуре теплоносителя и температуре топлива не должны быть положительными во всех критических состояниях, возможных во всем диапазоне изменения параметров реактора при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии.

2. АС с РУ типа РБМК

2.1. Эксплуатационный предел повреждения твэлов: - дефекты типа газовой неплотности - не более 0,2 % от числа твэлов в активной зоне; - прямой контакт ядерного топлива с теплоносителем - не более 0,02 % от числа твэлов в активной зоне. 2.2. Предел безопасной эксплуатации повреждения твэлов: - дефекты типа газовой неплотности - не более 1 % от числа твэлов в активной зоне; 2.3. Максимальный проектный предел повреждения твэлов соответствует непревышению следующих предельных параметров: - температура оболочек твэлов должна быть не более 1200°С; - максимальная температура топлива должна быть не выше температуры плавления. 2.4. Значения коэффициентов реактивности по температуре топлива и по мощности не должны быть положительными во всем диапазоне изменения параметров реактора при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии. В проекте РУ должен быть обоснован допустимый интервал безопасных значений парового коэффициента реактивности. Необходимо стремиться к тому, чтобы значения парового коэффициента реактивности при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, были близки к нулю. При эксплуатации АС величина парового коэффициента реактивности должна подтверждаться измерениями по верифицированным методикам с периодичностью, установленной в проекте РУ.

3. АС с РУ типа БН

3.1. Эксплуатационный предел повреждения твэлов: - дефекты типа газовой неплотности - не более 0,05 % от числа твэлов в активной зоне; - прямой контакт ядерного топлива с теплоносителем - не более 0,005 % от числа твэлов в активной зоне. 3.2. Предел безопасной эксплуатации повреждения твэлов: - дефекты типа газовой неплотности - не более 0,1 % от числа твэлов в активной зоне; - прямой контакт ядерного топлива с теплоносителем - не более 0,01 % от числа твэлов в активной зоне. 3.3. Максимальный проектный предел повреждения твэлов для быстрых натриевых реакторов с МОХ-топливом и оболочками твэлов из аустенитной стали ЧС-68ХД соответствует непревышению следующих предельных параметров: - температура оболочек твэлов - 900°С; - температура топлива - 2300°С; - объемное распухание оболочек твэлов – 15 %. 3.4. Значения коэффициентов реактивности по температуре и по мощности реактора, а также суммарного коэффициента реактивности по температуре теплоносителя и по температуре топлива должны быть отрицательными во всем диапазоне изменения параметров реактора при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии. Для запроектных аварий допустимый интервал значений натриевого пустотного эффекта должен быть обоснован в проекте РУ и АС.

4. АС с РУ типа ACT

4.1. Эксплуатационный предел повреждения твэлов: - дефекты типа газовой неплотности - не более 0,2 % от числа твэлов в активной зоне; - прямой контакт ядерного топлива с теплоносителем - не более 0,02 % от числа твэлов в активной зоне. 4.2. Предел безопасной эксплуатации повреждения твэлов: - дефекты типа газовой неплотности - не более 1 % от числа твэлов в активной зоне; - прямой контакт ядерного топлива с теплоносителем - не более 0,1 % от числа твэлов в активной зоне. 4.3. Максимальный проектный предел повреждения твэлов соответствует непревышению следующих предельных параметров: - температура оболочек твэлов должна быть не более 1200°С; - эквивалентная степень окисления оболочек твэлов должна быть не более предельного значения, устанавливаемого в проекте на основе экспериментальных данных; - доля прореагировавшего циркония в активной зоне должна быть не более 1% его массы в оболочках твэлов; - максимальная температура топлива должна быть не выше температуры плавления. 4.4. Значения коэффициентов реактивности по удельному объему теплоносителя и температуре топлива, по мощности реактора, суммарного коэффициента реактивности по температуре теплоносителя и температуре топлива, не должны быть положительными во всех критических состояниях, возможных во всем диапазоне изменения параметров реактора при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии.

5. АС с РУ типа ЭГП-6

5.1. Эксплуатационный предел повреждения твэлов (трубчатых твэлов с топливной композицией в виде крупки диоксида урана в магниевой матрице): - температура наружной поверхности оболочки твэла 430°С; - неплотности оболочек не допускаются. 5.2. Предел безопасной эксплуатации повреждения твэлов: - потеря герметичности наружной оболочки хотя бы одного твэла; - достижение 50-кратного превышения показаний системы контроля герметичности оболочек твэлов над фоновым значением для любой ТВС реактора. 5.3. Максимальный проектный предел повреждения твэлов: - температура оболочки твэла, разгруженного от внутреннего давления, 1100°С; - температура оболочки твэла, находящегося под рабочим внутреннем давлением, 930°С; - локальная глубина взаимодействия наружной оболочки твэла с матричным материалом - не более 85 %. 5.4. Значения коэффициентов реактивности по температуре топлива, по паросодержанию теплоносителя и по мощности не должны быть положительными во всем диапазоне изменения параметров реактора при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии.

Федеральная служба
по экологическому, технологическому и атомному надзору

ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА
В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ

Утверждены

Постановлением
Федеральной службы
по экологическому,
технологическому
и атомному надзору
от 20 декабря 2005 г. № 15

ПРАВИЛА ЯДЕРНОЙ БЕЗОПАСНОСТИ ДЛЯ ОБЪЕКТОВ
ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА

НП-063-05

Москва 2005

Настоящие федеральные нормы и правила "Правила ядерной безопасности для объектов ядерного топливного цикла" устанавливают требования к обеспечению ядерной безопасности при использовании, переработке, хранении и транспортировании ядерных делящихся материалов на объектах ядерного топливного цикла, а также требования ядерной безопасности к применяемым технологическим процессам и оборудованию, проектированию объектов ядерного топливного цикла.

Выпускаются впервые*.

Разработаны на основании нормативных правовых актов Российской Федерации, федеральных норм и правил, а также рекомендаций МАГАТЭ (серия изданий по безопасности № 110 "Безопасность ядерных установок"), рекомендаций OECD NEA - Агентства по ядерной энергии Организации экономического сотрудничества и развития ("Безопасность ядерного топливного цикла").

Нормативный документ прошел правовую экспертизу Минюста России (письмо Минюста России от 28 февраля 2006 г. № 01/1498-ЕЗ).

_________________

*Нормативный документ разработан в Научно-техническом центре по ядерной и радиационной безопасности (НТЦ ЯРБ) при участии Дубовенко А.С., Ирюшкина В.М., Кислова А.И. (Ростехнадзор), Калиберды И.В., Попыкина А.И., Слуцкера В.П., Строганова А.А. (НТЦ ЯРБ), Шведова М.О. (Росатом), Рязанова Б.Г., Свиридова В.И. (ГНЦ РФ "ФЭИ"), Валеева А.Н. (ГНЦ РФ "НИИАР"), Породнова П.Т. (ОАО "ТВЭЛ"), Романова А.В. (ОАО "МСЗ"), Долбышева В.В. (ФГУП "ГСПИ"), Кириллова Г.Т. (ФГУП "СХК"), Нежельского Ю.В. (ФГУП "ПО "Маяк"), Николаева В.Е. (ФГУП "УЭХК"), Татаурова А.Л. (ФГУ РНЦ "Курчатовский институт"), Чванкина Е.В. (ФГУП "ВНИИНМ").

Рассмотрены и учтены замечания Росатома, ФГУП "ПО "Маяк", ФГУП "ГХК", ФГУП "СХК", ФГУП "УЭХК", ОАО "МСЗ", ОАО "ТВЭЛ"; ГНЦ РФ "ФЭИ", ФГУП "ВНИИНМ", ФГУП ГИ "ВНИПИЭТ", ФГУП "ОКБМ имени И.И. Африкантова", ГНЦ РФ "НИИАР", ОАО "НЗХК", ФГУП "ГСПИ", ФГУП "НИИ НПО "Луч", ОАО "Свердниихиммаш".

Содержание

Перечень сокращений

ООБ - отчет по обоснованию безопасности

ОЯТЦ - объект ядерного топливного цикла

САС СЦР - система аварийной сигнализации о возникновении самоподдерживающейся цепной реакции деления

СЦР - самоподдерживающаяся цепная реакция деления

ТВС - тепловыделяющая сборка

твэл - тепловыделяющий элемент

ЯА - ядерная авария

ЯДМ (В, Н) - ядерный делящийся материал (вещество, нуклид)

ЯОЗ - ядерно-опасная зона

ЯОУ - ядерно-опасный участок

ЯТЦ - ядерный топливный цикл

Условные обозначения

К - коэффициент размножения нейтронов

К - коэффициент размножения нейтронов бесконечной гомогенной среды или бесконечно повторяющейся решетки

К эф - эффективный коэффициент размножения нейтронов

М з - норма загрузки (комплектации) ЯДМ (В, Н)

М н - норма накопления ЯДМ (В, Н)

Н з - норма закладки ЯДМ (В, Н)

С н - норма концентрации ЯДМ (Н) или ЯДМ (В)

С - концентрация ЯДМ (Н) или ЯДМ (В)

D - диаметр сферы, цилиндра

М - масса ЯДМ (В,Н)

n - коэффициент запаса для определенного параметра ядерной безопасности

Т - толщина слоя

V - объем

Индексы значений параметров ядерной безопасности С, D, М, Т, V

б - безопасное значение параметра ядерной безопасности

д - допустимое значение параметра ядерной безопасности

кр - критическое значение параметра ядерной безопасности

п - индекс порогового значения параметра ядерной безопасности

Термины и определения

В целях настоящего документа используются приведенные ниже термины и определения.

Безопасное оборудование (оборудование типа Б) - оборудование, конструкция, геометрические особенности и конструкционные материалы которого исключают возможность возникновения самоподдерживающейся цепной реакции деления (СЦР) при нормальной эксплуатации, а также при любых учитываемых в проекте объекта ядерного топливного цикла исходных событиях.

Безопасный параметр (безопасное значение параметра ядерной безопасности): безопасная масса Мб , безопасная концентрация Сб , безопасный объем , безопасный диаметр или безопасная толщина слоя Тб ) - значение параметра ядерной безопасности рассматриваемой системы, содержащей ЯДМ (В,Н), в n раз меньшее, чем значение соответствующего минимального критического параметра той же системы. Безопасный параметр должен обеспечивать значения К эф системы не более 0,95.

Влажность материала массовая (в %) - отношение массы воды, содержащейся в единице объема материала, к общей массе материала в данной единице объема, умноженное на 100.

Для материала, в котором содержатся различные соединения водорода, допускается использовать понятие "эквивалентная влажность", равная массовой доле водорода, выраженной в процентах и умноженной на 9.

Группа упаковок - совокупность упаковок, которую разрешается хранить или транспортировать без ограничения их взаимного размещения, или с ограничением взаимного размещения, которое должно обеспечиваться техническими средствами, входящими в состав упаковочного комплекта.

Допустимое количество упаковок - наибольшее количество упаковок, которое разрешается размещать в группе или штабеле.

Допустимый параметр (допустимое значение параметра ядерной безопасности): допустимая масса (допустимое количество для учетных единиц) М д, допустимый объем V д, допустимый диаметр D д или допустимая толщина слоя Т д - значение параметра ядерной безопасности рассматриваемой системы, содержащей ЯДМ (В,Н), в n раз меньшее, чем значение соответствующего критического параметра той же системы. Допустимые параметры должны обеспечивать значения К эф системы не более 0,95.

Единичный отказ - отказ, выход из строя одного элемента.

Заключение по ядерной безопасности - технический документ, устанавливающий условия и параметры ядерной безопасности для конкретного оборудования и (или) технологического процесса, условий транспортирования, пунктов хранения в целях обеспечения ядерной безопасности в случаях, если эти условия и параметры для данного оборудования и(или) технологического процесса не определены нормативными документами.

Замедлитель нейтронов - материал, эффективно замедляющий высокоэнергетические нейтроны.

Исходное событие - единичный отказ в технологических системах (элементах) объекта ЯТЦ, отклонение одного параметра ядерной безопасности, внешнее событие или ошибка работника (персонала), которые приводят к нарушению нормальной эксплуатации и могут привести к нарушению пределов и(или) условий безопасной эксплуатации. Исходное событие включает все зависимые отказы, являющиеся его следствием.

Консервативный подход - подход, когда при анализе безопасности технологических систем, элементов, процессов на ОЯТЦ для параметров и их характеристик принимаются значения и пределы, заведомо приводящие к более неблагоприятным результатам.

Контейнер защищающий - упаковочный комплект, конструкция и ограничение загрузки которого обеспечивают снижение нейтронного взаимодействия между ЯДМ (В) или изделиями на их основе, содержащимися в таких упаковочных комплектах, в такой степени, что значение К зф системы из любого количества таких упаковок при нормальной эксплуатации не превышает 0,95.

Коэффициент запаса - устанавливаемое минимальное значение коэффициента n (см. определения "Безопасный параметр" и "Допустимый параметр"), используемое для определения безопасного или допустимого параметра.

Коэффициент размножения - отношение полного числа нейтронов, образующихся в системе в рассматриваемом интервале времени за счет деления ядер, к числу нейтронов, выбывающих из этой системы в результате поглощения и утечки за этот же интервал времени. В случае если К определяется для бесконечной среды или для бесконечно повторяющейся решетки, он называется коэффициентом размножения бесконечной среды К ∞, а для среды конечных размеров - эффективным коэффициентом размножения К эф.

Критический параметр (критическое значение параметра ядерной безопасности): критическая масса (количество для учетных единиц) М кр, критическая концентрация С кр, критический объем V кр, критический диаметр D кр или критическая толщина слоя T кр - значение параметра содержащей ЯДМ (В,Н) системы, соответствующее эффективному коэффициенту размножения К эф системы, равному 1.

Массовая доля замедлителя нейтронов в материале - величина, определяемая как отношение массы нуклидов, замедляющих нейтроны, к массе материала.

Массовая концентрация нуклидов - масса нуклидов в единице объема раствора или смеси.

Массовая доля нуклида в материале - величина, определяемая как отношение массы нуклида к массе материала.

Минимальный критический параметр - наименьшее из значений критического параметра рассматриваемой системы во всем диапазоне его изменения.

Норма загрузки (комплектации) - масса ЯДМ (В,Н), которую разрешается загружать в оборудование, отдельную емкость, упаковочный комплект и т.п.

Норма закладки - масса ЯДМ (В,Н), которую разрешается накапливать в технологическом оборудовании сверх установленных ограничений нормы загрузки, нормы концентрации, за счет невыдаваемых объемов, образования осадков, отложений на поверхности оборудования.

Норма концентрации - массовая концентрация ЯДМ (В,Н), при которой ЯДМ (В,Н) разрешается перерабатывать в оборудовании, а также хранить или транспортировать в упаковках.

Норма накопления - масса ЯДМ (В,Н), которую разрешается накапливать во вспомогательном оборудовании (фильтрах, коммуникациях, ловушках и т.п.), т.е. в оборудовании, в которое ЯДМ (В,Н) не должен загружаться в соответствии с технологическим процессом, но может попадать в процессе эксплуатации этого оборудования.

Оборудование опасное (оборудование типа О) - оборудование, которое не является безопасным оборудованием (см. определение "Безопасное оборудование (оборудование типа Б)");

Оборудование с повышенным коэффициентом запаса (оборудование типа ПКЗ) - опасное оборудование, особенности конструкции которого при работе с данными ЯДМ (В,Н) обеспечивают величину минимальной критической массы, превышающую не менее чем в 5 раз минимальную критическую массу для того же ЯДМ (В,Н), но в системе, имеющей форму сферы с полным отражателем, и для которого установлены повышенные коэффициенты запаса.

Отражатель нейтронов (отражатель) - часть системы, в которой ЯДМ (В,Н) отсутствуют, но которая способна возвращать нейтроны в часть системы, содержащую ЯДМ (В,Н).

Параметр ядерной безопасности: объем, диаметр, толщина слоя, ограниченного внутренними поверхностями оборудования ядерной установки, масса ЯДМ (В), загружаемая в оборудование ядерной установки или находящаяся в нем; концентрация ЯДМ (Н) в ЯДМ (В) и содержание в нем поглотителей и замедлителей нейтронов; обогащение урана, нуклидный состав ЯДМ (В); влажность ЯДМ (В) (содержание водорода); характеристики оборудования и окружения ядерной установки, определяющие условия отражения нейтронов (конструкция, геометрия, использованные конструкционные материалы, наличие поглощающих вставок и т.д.); расстояние между единицами оборудования - физическая величина (параметр), для значения которой установлено ограничение с целью обеспечения ядерной безопасности.

Для ядерных установок и упаковочных комплектов, конструкции которых имеют повторяющиеся элементы (например, ячейки и пеналы для размещения отдельных сборок ядерного топлива при их хранении и транспортировании в упаковке, штабели упаковок ядерных материалов и т.д.), к параметрам ядерной безопасности относятся также количество повторяющихся элементов; расстояние (шаг решетки) между осями соседних элементов .

Перегруз - превышение безопасных, допустимых значений параметров ядерной безопасности:

Превышение безопасной или допустимой массы ЯДМ (В,Н) более чем в 1,4 раза;

Превышение безопасной концентрации ЯДМ (Н) более чем в 1,1 раза.

Поглотитель нейтронов - неделящийся материал, который поглощает нейтроны.

Пороговое значение параметра ядерной безопасности (пороговое значение параметра, пороговый параметр) - верхний (нижний) предел значения параметра ядерной безопасности, который не должен быть нарушен при нормальной эксплуатации,

Предаварийная ситуация - состояние ОЯТЦ, характеризующееся нарушением пределов и (или) условий безопасной эксплуатации, не перешедшее в ядерную аварию,

Предельное значение параметра (предельный параметр) - значение параметра ядерной безопасности в возможном диапазоне его изменения, при котором (при определенных значениях других параметров ядерной безопасности системы, событиях из числа предусмотренных проектом) коэффициент размножения системы или оборудования достигает наибольшего значения.

Самоподдерживающаяся цепная ядерная реакция деления - процесс деления ядер нуклидов, при котором число нейтронов, образующихся в процессе деления ядер за какой-либо интервал времени, равно или больше числа нейтронов, убывающих из системы вследствие утечки и поглощения за этот же интервал времени.

Система (для настоящего документа) - содержащая ЯДМ (В,Н) совокупность элементов, геометрия, материальный и нуклидный состав которых рассматриваются при обосновании ядерной безопасности.

Система аварийной сигнализации - совокупность технических средств, предназначенная для обнаружения СЦР и для выдачи аварийных сигналов о необходимости эвакуации работников из ядерно-опасной зоны.

Система без отражателя - система, в которой влияние отражателя на величину критических параметров эквивалентно по своей отражательной способности плотно прилегающему стальному или водяному отражателю толщиной не более 3 мм.

Система нейтронно-изолированная (нейтронно-изолированная система) - система, для которой можно пренебречь влиянием нейтронного взаимодействия с любым окружением на значение эффективного коэффициента размножения нейтронов.

Система с номинальным отражателем - система с плотно прилегающим отражателем из воды толщиной 25 мм. Система, в которой влияние отражателей на величину критических параметров эквивалентно по своей отражающей способности плотно прилегающему отражателю из воды толщиной более 3 мм и не более 25 мм, должна рассматриваться как система с номинальным отражателем,

Система с отстоящим отражателем - система, для которой конструктивно, с помощью технических средств или ее размещения, исключена возможность приближения отражателей на расстояние, меньшее установленного значения.

Система с полной радиационной защитой - система, защитные элементы конструкции которой ослабляют поглощенную дозу мгновенного нейтронного и гамма-излучения от произошедшей в ней СЦР с числом делений 10 18 до значения менее 0,1 Гр и изолирующие элементы которой предотвращают поступление радиоактивных аэрозолей в обслуживаемые помещения до уровней, соответствующих получению дозы менее 0,01 3в в течение 1 ч после возникновения СЦР.

Система с полным отражателем - система с плотно прилегающим отражателем из воды толщиной 25 см. Система, в которой влияние отражателей на величину критических параметров эквивалентно по своей отражающей способности плотно прилегающему отражателю из воды толщиной более 25 мм, должна рассматриваться как система с полным отражателем. Системы с отражателями, отражающие способности которых превосходят полный отражатель, должны быть оговорены особо при составлении документации по ядерной безопасности.

Транспортный упаковочный комплект (упаковочный комплект) - предназначенный для транспортирования и/или хранения ЯДМ (В) комплекс (совокупность) конструкционных элементов, включающих при необходимости одну или несколько емкостей, сорбирующие вещества, дистанционирующие конструкции, устройства для защиты от излучений, для охлаждения и тепловой изоляции, амортизаторы и др., необходимых для обеспечения соответствия упаковки требованиям безопасности.

Упаковка (упаковка ЯДМ (В) - упаковочный комплект с помещенным в него ЯДМ (В).

Шаг решетки - расстояние между осями соседних упаковок, тепловыделяющих элементов, тепловыделяющих сборок, расположенных в узлах плоской регулярной решетки или между центрами компонент, расположенных в узлах объемных регулярных решеток.

Штабель упаковок - совокупность упаковок, которую разрешается хранить совместно при условии соблюдения установленных ограничений, относящихся к взаимному размещению упаковок с помощью технических средств, не входящих в состав упаковочного комплекта (стеллажи, фиксаторы, разметка и т.п.).

Ядерно-опасная зона - производственная площадь с ЯДМ (В), в пределах которой поглощенная доза мгновенного смешанного нейтронного и гамма- излучения от СЦР с числом делений 10 18 может быть более 0,1 Гр.

Ядерный делящийся материал (вещество) - материал (вещество), содержащий ядерно-опасные делящиеся нуклиды ЯДМ (Н), при работе с которым не исключена возможность возникновения СЦР.

Ядерно-опасный делящийся нуклид - делящийся нуклид, присутствие которого в материале не исключает возможности возникновения СЦР при обращении с этим материалом.

Ядерно-опасный участок - подразделение ОЯТЦ (цех, участок, отделение, отдел, лаборатория, хранилище) или производственное помещение, в котором осуществляется любое обращение с ЯДМ (В,Н) - плутонием, ураном-233, ураном, обогащение которого нуклидом уран-235 выше 1% (масс.), если суммарная масса плутония и нуклидов уран-233, уран-235, находящихся в любой момент времени в данном подразделении, превышает 300 г. Ядерно-опасный участок включает все производственные помещения подразделения и отдельные здания подразделения, в которых находятся или могут находиться ЯДМ (В,Н).

Подразделение, в котором проводятся работы с ЯДМ (В,Н) в количестве более 300 г, не является ЯОУ, если оно выведено из перечня ЯОУ согласно Заключению по ядерной безопасности.

1. Назначение и область применения

1.1. Настоящие федеральные нормы и правила "Правила ядерной безопасности для объектов ядерного топливного цикла" (далее - Правила) устанавливают:

Основные положения и общие требования обеспечения ядерной безопасности, а также термины и определения при использовании, переработке, хранении и транспортировании ЯДМ (В,Н) в пределах площадки ОЯТЦ;

Требования обеспечения ядерной безопасности, реализуемые при проектировании, сооружении, вводе в эксплуатацию, эксплуатации и при выводе из эксплуатации ядерных установок и пунктов хранения ядерных материалов;

Требования к методам и средствам контроля параметров ядерной безопасности.

1.2. Настоящие Правила распространяются на:

Проектируемые, сооружаемые, эксплуатируемые и выводимые из эксплуатации объекты ядерного топливного цикла (ЯТЦ), включая:

Сооружения, комплексы, установки, предназначенные для использования, переработки и транспортирования ЯДМ (В,Н) (включая сублиматное производство, разделение изотопов урана, производство топлива, химико-металлургическое производство, радиохимическую переработку, хранилища ЯДМ (В), расположенные на территории ядерной установки и предусмотренные проектом ядерной установки),

А также стационарные объекты и сооружения, предназначенные для хранения ЯДМ (В), включая объекты и сооружения, расположенные на территории ядерной установки и не предусмотренные в проекте ядерной установки; стационарные объекты и сооружения, предназначенные для хранения радиоактивных отходов, содержащих ЯДМ (В);

Научно-исследовательские организации (институты, лаборатории), использующие ЯДМ (В) при проведении научно-исследовательских и опытно-конструкторских работ;

Проектные, конструкторские и другие организации (кроме строительных), в состав которых входят подразделения, занимающиеся разработкой технологий, конструированием оборудования, транспортных средств и упаковочных комплектов для использования, переработки, хранения и транспортирования ЯДМ (В), разработкой методов и средств контроля параметров ядерной безопасности, систем управления технологическими процессами ОЯТЦ, систем аварийной сигнализации о возникновении СЦР, проектированием ядерных установок и пунктов хранения ядерных материалов.

1.3. Настоящие Правила не распространяются:

На сооружения и комплексы с ядерными реакторами, в том числе атомные станции, суда и другие плавсредства, космические и летательные аппараты, другие транспортные и транспортабельные средства, сооружения и комплексы с промышленными, экспериментальными и исследовательскими ядерными реакторами, критическими и подкритическими ядерными стендами, установки и устройства с ядерными зарядами для использования в мирных целях и другие ядерные установки, оснащенные системами управления и защиты, хранилища свежего и отработавшего ядерного топлива атомных станций, экспериментальных и исследовательских реакторов;

На организации и их подразделения, использующие, перерабатывающие, хранящие и транспортирующие уран и плутоний, если суммарная масса урана-233, урана-235 и плутония не превышает 300 г на любой момент времени;

На организации и их подразделения, осуществляющие обращение с ураном, обогащение которого по изотопу уран-235 не превышает 1% (масс.), за исключением случаев, когда ЯДМ (В) находится в виде ТВС, твэлов, таблеток;

На подразделения отдельного ОЯТЦ, эксплуатирующей организации ОЯТЦ или организации, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, исключенные из перечня ЯОУ в установленном порядке;

На транспортирование ЯДМ (В) за пределами площадок ОЯТЦ.

2. Общие требования обеспечения ядерной безопасности объектов ядерного топливного цикла

2.1. Обеспечение ядерной безопасности ОЯТЦ при использовании, переработке, хранении и транспортировании ЯДМ (В) состоит в создании и поддержании условий для:

Предотвращения ЯА (возникновения СЦР);

Максимально возможного снижения тяжести последствий ЯА.

2.2. Разработка технологий, конструирование оборудования, проектирование, сооружение, ввод в эксплуатацию, эксплуатация и вывод из эксплуатации ОЯТЦ должны осуществляться в соответствии с основными требованиями обеспечения ядерной безопасности, перечисленными ниже;

Предотвращение возникновения СЦР как при нормальных условиях, так и при любом рассмотренном при обосновании безопасности исходном событии (для случаев более одного исходного события должны быть предусмотрены меры по снижению тяжести последствий ЯА);

Предотвращение неконтролируемых и несанкционированных случаев переработки, накопления, перемещения, передачи и транспортирования ЯДМ (В);

Предотвращение нарушений условий и требований ядерной безопасности, регламентированных проектно-конструкторской и технологической документацией, нормативными документами по ядерной безопасности (правилами, инструкциями, технологическими регламентами), как при нормальной эксплуатации, так и при исходных событиях аварий (примерный перечень исходных событий приведен в );

Преимущественное использование безопасного оборудования (оборудования типа Б), технических средств и средств автоматизации;

Осуществление контроля (преимущественно автоматического) параметров ядерной безопасности в сочетании с блокировками;

Применение консервативного подхода при обосновании ядерной безопасности.

2.3. Эффективный коэффициент размножения нейтронов К эф как любой единицы отдельного оборудования, в котором содержатся ЯДМ (В,Н), так и любой нейтронно-изолированной системы в целом должен поддерживаться на как можно более низком практически приемлемом уровне и не должен превышать 0,95 при нормальной эксплуатации и 0,98 при нарушениях нормальной эксплуатации (единичном отказе или ошибке работников).

2.4. Предотвращение возникновения СЦР при обращении с ЯДМ (В,Н) достигается за счет ограничений и мер, перечисленных в пунктах 2.4.1 - 2.4.9.

2.4.1. Ограничения, налагаемые на геометрические форму и размеры оборудования (включая ячейки хранилищ ЯДМ (В);

2.4.2. Ограничения изотопного и (или) нуклидного состава ЯДМ (В);

2.4.3. Использование гомогенных и (или) гетерогенных поглотителей нейтронов;

2.4.4. Ограничения помещаемой в оборудование массы ЯДМ (В) с учетом его изотопного состава;

2.4.5. Ограничения концентрации ЯДМ (В);

2.4.6. Ограничения массовых долей замедлителей нейтронов в ЯДМ (В);

2.4.7. Ограничения, накладываемые на отражатели нейтронов и на взаимное размещение оборудования ОЯТЦ;

2.4.8. Организационные и технические меры по снижению вероятности возникновения СЦР;

2.4.9. Комбинация ограничений и мер, указанных в пунктах 2.4.1 - 2.4.8.

2.5. Если в оборудовании предполагается переработка ЯДМ (В) с различным изотопным и(или) нуклидным составом, ограничения ядерной безопасности должны быть установлены по наиболее опасному составу.

2.6. При хранении и транспортировании ЯДМ (В,Н) предотвращение возникновения СЦР, помимо ограничений и мер, указанных в пунктах 2.4.1 - 2.4.9, обеспечивается за счет:

Конструкции хранилища и упаковок, а также ограничений по количеству, размещению упаковок и используемым средствам пожаротушения;

Испытаний упаковочных комплектов и упаковок на соответствие нормальным условиям эксплуатации;

Мероприятий, проводимых для обеспечения необходимого охлаждения ЯДМ (В) или отработавших ТВС с целью предотвращения изменения фазового состояния ЯДМ (В), повреждения твэлов или элементов конструкции хранилищ и упаковок.

2.7. Для обеспечения ядерной безопасности достаточно установить один из безопасных параметров (массу ЯДМ (Н) или ЯДМ (В), помещаемых в оборудование или единицы хранения, концентрацию ЯДМ (Н) или ЯДМ (В), диаметр, толщину, объем, ограниченные внутренними поверхностями оборудования) для отдельных единиц оборудования или единиц хранения.

2.8. Нормы загрузки, накопления, закладки, геометрические размеры оборудования могут быть установлены, исходя из допустимых параметров только в том случае, если условия производства гарантируют соблюдение установленных ограничений (массовой доли замедлителей нейтронов, плотности, изотопного и нуклидного состава, концентрации поглотителей нейтронов). Должны быть также определены преимущественно технические средства для контроля выполнения дополнительных ограничений при эксплуатации оборудования, включая средства измерения контролируемых параметров и исполнительные механизмы (блокировки, дозаторы, прерыватели и т.д.).

В противном случае характеристики, параметры оборудования и нормы должны быть установлены, исходя из безопасных значений параметров ядерной безопасности,

2.9. Безопасные и допустимые параметры отдельных единиц оборудования должны быть определены, исходя из величины К эф не более 0,95, при этом коэффициент запаса n должен иметь значения не менее приведенных ниже.

Параметр

Коэффициент запаса п

Безопасная (допустимая) масса

2,1

Безопасная концентрация

1,3

Безопасный (допустимый) объем

1,3

Безопасный (допустимый) диаметр

1,1

Безопасная (допустимая) толщина слоя

1,1

2.10. Для оборудования типа ПКЗ минимальное значение коэффициента запаса n равняется 3,3 при расчете безопасных масс и 2,0 - при расчете безопасных концентраций.

2.11. При хранении и транспортировании ЯДМ (В) выполнение требований ядерной безопасности для отдельной упаковки должно быть обеспечено установлением безопасного или допустимого значения одного из параметров ядерной безопасности (массы ЯДМ (В,Н), концентрации ЯДВ (Н), диаметра, толщины слоя, объема).

2.12. Если для хранения и транспортирования ЯДМ (В) используются иные упаковочные комплекты, чем контейнеры защищающие, дополнительно к пункту 2.11 должно быть обеспечено выполнение требований ядерной безопасности по ограничению коэффициента размножения группы (штабеля) упаковок ограничением количества упаковок в группе (штабеле), минимального расстояния между упаковками, группами (штабелями) упаковок и требований к условиям хранения, порядку загрузки и транспортирования.

2.13. Во всех случаях, когда это возможно, должно быть использовано безопасное оборудование (типа Б), а случаях, когда это невозможно или нецелесообразно, - опасное оборудование с повышенным коэффициентом запаса (оборудование типа ПКЗ).

Оборудование типа О может быть использовано только тогда, когда оборудование типа Б или ПКЗ невозможно применять из-за отсутствия его работоспособных конструкций и (или) в связи с особенностями принятых технологий и только в сочетании с ограничениями параметров ядерной безопасности и контролем этих ограничений.

Применение опасного оборудования типа ПКЗ и О должно быть обосновано в проекте и согласовано в установленном порядке.

2.14. Для обеспечения ядерной безопасности оборудования типа О значение параметров ядерной безопасности должны быть выбраны с учетом погрешностей их определения в соответствии с .

2.15. При эксплуатации ОЯТЦ должно быть обеспечено:

Исключение использования оборудования не по назначению;

Осуществление (при необходимости) входного контроля используемых на ОЯТЦ технологических сред и материалов;

Поддержание технологического и вспомогательного оборудования в определенном проектом состоянии;

Непревышение норм накопления ЯДМ (В) во вспомогательном оборудовании (коммуникациях и т.п.), выполненном в опасном исполнении.

2.16. Эксплуатация опасного оборудования типа ПКЗ и О допускается только при выполнении, наряду с требованиями пункта 2.15, одного из требований, перечисленных в пунктах 2.16.1 - 2.16.4.

2.16.1. Ограничение массы ЯДМ (В), загружаемой и (или) накапливающейся в оборудовании (установлением нормы загрузки, норм накопления и закладки), без ограничения других параметров ядерной безопасности, если нормы накопления, загрузки и закладки установлены, исходя из значений безопасной массы.

2.16.2. Ограничение концентрации ЯДМ (Н) в ЯДМ (В), загружаемые в технологическое оборудование (установлением нормы концентрации и нормы закладки ЯДМ (Н), при следующем дополнительном условии:

Норма закладки для такого оборудования не должна превышать 5% от минимальной критической массы для данного оборудования;

Норма концентрации ЯДМ (Н) устанавливается, исходя из безопасной концентрации.

Масса ЯДМ (В) при этом не ограничивается.

2.16.3. Ограничение (установлением норм загрузки и закладки, нормы накопления) массы ЯДМ (В), загружаемой в технологическое оборудование и (или) накапливаемой в нем, с одновременным установлением пороговых значений одного или нескольких параметров ядерной безопасности этого ЯДМ (В,Н) (концентрации, массовой доли ЯДМ (Н) в ЯДМ (В), плотности, массовой влажности материала и т.п.), если нормы загрузки и закладки установлены, исходя из значений допустимой массы, определенной для предельных значений ограничиваемых параметров ЯДМ (В,Н).

2.16.4. Ограничение объема, диаметра, толщины слоя с одновременным установлением пороговых значений одного или нескольких параметров ядерной безопасности ЯДМ (В) (массовой доли ЯДМ (Н), замедлителя нейтронов, плотности, массовой влажности ЯДМ (В) и т.п.). Допустимые геометрические размеры оборудования должны быть установлены, исходя из предельных значений параметров ЯДМ (В,Н). Нормы загрузки, накопления, концентрации и закладки для такого оборудования не устанавливаются.

2.17. Если при непрерывном технологическом процессе осуществляется передача ЯДМ (В,Н) из одного оборудования в другое, то;

При передаче ЯДМ (В,Н) в опасное оборудование из безопасного ограничения параметров ядерной безопасности должны быть также установлены для данного безопасного оборудования;

При передаче ЯДМ (В,Н) из опасного оборудования в другое опасное допустимые (безопасные) параметры должны быть установлены по наименьшим значениям.

Ограничения параметров ядерной безопасности должны обеспечивать ядерную безопасность системы в целом.

2.18. Ядерная безопасность ОЯТЦ должна быть обоснована в проекте в соответствии с нормативными документами и учитываться при разработке технологий и конструировании отдельного оборудования.

2.19. При разработке технологий, конструировании оборудования, а также на всех этапах жизненного цикла ОЯТЦ (проектирования, сооружения, ввода в эксплуатацию, эксплуатации и вывода из эксплуатации) должно быть обеспечено требуемое качество всех имеющих отношение к ядерной безопасности работ в соответствии с нормативными документами.

2.20. На ЯОУ должна быть предусмотрена система аварийной сигнализации о возникновении САС СЦР. Она должна удовлетворять требованиям пунктов 2.20.1 - 2.20.6.

2.20.1. Требования к проектированию, эксплуатации, техническим характеристикам САС устанавливаются нормативными документами.

2.20.2. При эксплуатации ОЯТЦ САС СЦР должна находиться в режиме постоянной готовности.

При условии гарантированного отсутствия работников и прекращения операций с ЯДМ (В,Н) в ЯОЗ во внерабочее время допускается отключать САС СЦР на это время.

При обнаружении неисправностей в САС СЦР, приводящих к нарушению ее функций, работы с ЯДМ (В,Н) должны быть прекращены. Продолжение работ допускается только после устранения неисправностей САС СЦР и приведения ее в рабочее состояние.

Во время восстановления САС СЦР допускается продолжение непрерывного технологического процесса при условии размещения приборов радиационного контроля и их функционирования в соответствии с требованием пункта 2.21.

2.20.3. Устройства звуковой и световой сигнализации должны приводиться в действие автоматически.

2.20.4. После возникновения СЦР и срабатывания САС СЦР аварийный сигнал о необходимости эвакуации должен продолжаться и после того, как интенсивность регистрируемых излучений станет менее порога срабатывания САС СЦР. Ручное устройство выключения аварийного сигнала САС СЦР должно иметь ограниченный доступ и находиться вне ЯОЗ.

2.20.5. Аварийный сигнал о необходимости эвакуации должен иметь достаточные громкость звука и зону действия. При необходимости проектом должно быть предусмотрено несколько источников сигнала, расположенных таким образом, чтобы он был слышен во всех точках ЯОЗ, из которых требуется эвакуация.

2.20.6. Количество ложных срабатываний САС СЦР не должно превышать двух раз в год.

2.21. Допускается выполнение работниками разовых операций с ЯДМ (В,Н) на производственном участке, не оснащенном САС СЦР, по нарядам-допускам.

При выполнении указанных работ должны быть использованы приборы для измерения мощности дозы гамма-излучения с сигнализацией о превышении установленного порога срабатывания. При этом работники должны быть подготовлены к немедленной эвакуации по аварийному сигналу.

2.22. Критерием отказа от установки САС СЦР является отсутствие ограничений по ядерной безопасности для ядерных установок и хранилищ с ЯДМ (В,Н), установленных настоящими Правилами. При наличии таких ограничений решение об отказе от размещения САС СЦР должно быть обосновано в проекте на основании Заключения по ядерной безопасности.

2.23. Допускается не устанавливать САС СЦР на ЯОУ, имеющих полную радиационную защиту.

2.24. При возникновении СЦР работы на ЯОУ должны быть остановлены. Решение об их возобновлении должно приниматься после устранения причин возникновения СЦР и ликвидации ее последствий в порядке, установленном нормативными документами.

3. Организационные требования обеспечения ядерной безопасности

3.1. Организационные структуры, необходимые для обеспечения ядерной безопасности ОЯТЦ, должны быть созданы на всех уровнях управления ЯТЦ.

3.2. В эксплуатирующей организации ОЯТЦ или в организации, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, должна быть организована служба ядерной безопасности, независимая от подразделений, непосредственно отвечающих за выпуск продукции.

В научно-исследовательских организациях допускается не создавать службу ядерной безопасности при условии назначения лиц, ответственных за обеспечение ядерной безопасности.

3.3. В эксплуатирующей организации ОЯТЦ или в организации, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, должны назначаться должностные лица с необходимыми полномочиями, на которых эксплуатирующей организацией или организацией, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, возлагается общее руководство работой по обеспечению ядерной безопасности и ответственность за обеспечение ядерной безопасности, и лицо, непосредственно организующее эту работу и осуществляющее контроль обеспечения ядерной безопасности.

Обязанности и ответственность должностных лиц структурных подразделений ОЯТЦ по обеспечению ядерной безопасности должны быть отражены в соответствующих положениях о подразделениях, отделах, службах и в должностных инструкциях.

3.4. В эксплуатирующей организации ОЯТЦ или в организации, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, должно разрабатываться положение (стандарт предприятия) об организации работ по обеспечению ядерной безопасности, утверждаемое должностным лицом, ответственным за обеспечение ядерной безопасности.

3.5. Эксплуатирующая организация ОЯТЦ и организации, выполняющие работы и предоставляющие услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, должны иметь перечень ЯОУ каждого ОЯТЦ в соответствии с проектной документацией. Перечень и изменения в составе перечня ЯОУ должны отражаться в ООБ.

3.6. Технологические регламенты производственных процессов и отдельных операций с ЯДМ (В) должны содержать раздел, отражающий вопросы обеспечения ядерной безопасности (допускаются ссылки на соответствующий раздел инструкции по ядерной безопасности) и включающий:

Данные о пороговых значениях концентраций, масс с учетом возможных отклонений от нормального хода технологического процесса;

Описание возможных аварийных отклонений, которые могут привести к СЦР;

Порядок действий работников при отклонениях от безопасного ведения технологического процесса и при авариях;

Аппаратурно-технологические схемы.

3.7 На основании положения об организации работ по ядерной безопасности, технологических регламентов и нормативных документов разрабатываются инструкции по ядерной безопасности. Инструкция по ядерной безопасности должна содержать следующие разделы:

Технические и организационные мероприятия по обеспечению ядерной безопасности с указанием по всему тексту подлинного названия ЯДМ (В,Н),

Перечень оборудования, в которые загружается или попадает в процессе эксплуатации ЯДМ (В,Н), с указанием номера аппарата (установки), номера чертежа, типа оборудования (Б, ПКЗ, О), нормы загрузки (нормы накопления) или нормы концентрации, основание для назначения этих норм, погрешности, с которыми определяются указанные параметры, способ обеспечения указанных норм;

Нормы закладок, периодичность и порядок проведения зачисток, промывок оборудования и обследования его приборами контроля, периодичность контроля и замены фильтров;

Порядок использования средств контроля, применяемых для обеспечения ядерной безопасности;

Условия хранения, размещения и транспортирования ЯДМ (В,Н), перечень упаковочных комплектов;

Порядок и разрешенные средства ликвидации пожаров в помещениях с ЯДМ (В,Н);

Ответственность работников за соблюдение требований ядерной безопасности.

Допускается отдельные разделы инструкции издавать самостоятельным документом, оформленным и утвержденным аналогично инструкции по ядерной безопасности.

3.8. В эксплуатирующей организации ОЯТЦ и (или) в организации, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, а также в каждом ОЯТЦ на всех уровнях должна быть организована и постоянно проводиться работа по повышению культуры безопасности рабочих и инженерно-технических работников, непосредственно выполняющих работы с ЯДМ (В,Н) или контролирующих правильность ведения работ, в том числе и в части выполнения установленных требований ядерной безопасности.

3.8.1. Работники должны быть ознакомлены в полном объеме руководством ОЯТЦ или подразделений ОЯТЦ с ядерной опасностью данного технологического процесса, источниками этой опасности (возможными причинами возникновения СЦР) и последствиями возникновения СЦР.

3.8.2. Работникам должна быть предоставлена возможность получения от квалифицированных специалистов разъяснений по интересующим их вопросам ядерной безопасности, а также при желании - дополнительных информационных и методических материалов.

3.8.3. На рабочих местах должны быть памятки, составленные на основании инструкции по ядерной безопасности и содержащие нормы загрузки (комплектации) ЯДМ (В,Н).

3.9. В эксплуатирующей организации ОЯТЦ или в организации, выполняющей работы и предоставляющей услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, в соответствии с действующим законодательством и нормативными документами должно быть разработано положение о порядке допуска к работам с ЯДМ (В,Н).

4. Обеспечение ядерной безопасности при разработке технологических процессов, конструировании оборудования и проектировании объектов ядерного топливного цикла

4.1. При разработке технологических процессов использования, переработки, хранения и транспортирования ЯДМ (В) для новых и действующих (реконструируемых и модернизируемых) ОЯТЦ необходимо исключать или минимизировать возможность протекания процессов, приводящих к накоплению ЯДМ (В) в элементах оборудования (за исключением предназначенных для этого элементов), к термическому или коррозионному разрушению элементов оборудования, в том числе предусмотренных конструкторской документацией поглощающих вставок, а также исключать или минимизировать использование взрыво- и пожароопасных технологических сред и материалов.

4.2. Допуски на изготовление оборудования, коррозию, установочные и монтажные размеры должны учитываться при определении норм и пороговых значений параметров ядерной безопасности консервативно.

4.3. Конструкция упаковочного комплекта для хранения и транспортирования ЯДМ (В) должна предотвращать проникновение в него воды при нормальной эксплуатации, нарушениях нормальной эксплуатации и проектных авариях, если оно приводит к превышению установленного настоящими Правилами значения К эф, равного 0,98.

4.4. В проекте должны быть предусмотрены технические и организационные меры по предотвращению возникновения СЦР и ограничению ее возможных последствий. При проектировании должно предусматриваться преимущественное использование оборудования типа Б.

4.5. Безопасные и допустимые параметры оборудования и ЯДМ (В,Н) должны выбираться в соответствии с нормативными документами. В случае отсутствия в нормативных документах они должны быть обоснованы в проекте и подтверждены Заключением по ядерной безопасности.

4.6. При проектировании новых, реконструкции и модернизации действующих ОЯТЦ необходимо:

Максимально ограничивать необходимость нахождения работников в ЯОЗ путем автоматизации или механизации технологических процессов, соответствующего размещения оборудования, рабочих мест, мест хранения, применения биологической защиты и других мер защиты;

Обеспечивать (везде, где это возможно и целесообразно) автоматическое управление технологическим процессом и автоматический контроль параметров ядерной безопасности;

Обеспечивать выполнение требований, изложенных в ;

Размещать технологические среды, являющиеся замедлителями нейтронов, таким образом, чтобы максимально уменьшать возможность попадания этих сред в непосредственное окружение оборудования, мест хранения при предусмотренных проектом событиях;

Размещать оборудование таким образом, чтобы исключать или снижать до приемлемых уровней нейтронное взаимодействие между различными единицами оборудования с ЯДМ (В);

Исключать возникновение СЦР за счет нейтронного взаимодействия между упаковками и оборудованием с ЯДМ (В) при транспортировании;

Исключать попадание опасных количеств водородсодержащих веществ в оборудование, хранилище, где, согласно требованиям ядерной безопасности, таких веществ не должно быть;

Размещать оборудование таким образом, чтобы исключать наличие преград на путях эвакуации работников из ЯОЗ в случае ЯА на ОЯТЦ и минимизировать время эвакуации;

Для каждого рабочего места определять пространство, в пределах которого ЯДМ (В) может перемещаться в процессе выполнения технологических операций без ограничений в количествах, не превышающих установленные нормы, а за пределами которого ЯДМ (В) находиться не должен.

4.7. Для ЯОЗ должны быть разработаны меры по обеспечению (в случае возникновения СЦР) возможности немедленной эвакуации работников с рабочих мест и из производственных помещений в заранее определенные и известные работникам места по заранее определенным и известным работникам маршрутам для снижения до возможного минимума облучения работников.

Должен быть минимизирован риск, связанный с оставлением работниками рабочих мест и производственных помещений.

4.8. Для обеспечения ядерной безопасности в проекте ОЯТЦ должны быть предусмотрены:

Перечни блокировок, а также технические требования к условиям их срабатывания;

Технические и (или) организационные меры, исключающие несанкционированный доступ к блокировкам, средствам измерения и контроля;

Средства для измерения параметров ядерной безопасности. Если методика измерений и технические средства измерений параметров ядерной безопасности включают операции с участием работников, то при выполнении этих измерений должны быть использованы процедуры получения и обработки данных, поверочные схемы, рабочие эталоны, снижающие вероятность появления грубых ошибок в конечном результате измерений, а также вероятность превышения пределов систематических погрешностей измерений, установленных в процессе метрологической аттестации;

Периодичность и порядок проверки геометрических размеров оборудования, работоспособность поглощающих вставок;

Кратчайшие пути эвакуации работников при ЯА.

4.9. Все потребители электроэнергии ОЯТЦ должны быть классифицированы по группам надежности по электроснабжению в зависимости от их влияния на обеспечение ядерной безопасности. Классификация потребителей электроэнергии ОЯТЦ по группам надежности по электроснабжению и выбор аварийных источников электроэнергии должны быть обоснованы в проекте.

4.10. ЯДМ (В) должны храниться в специально предназначенных для хранения местах.

4.11. Расположение пункта хранения ЯДМ (В) (кроме хранилищ отработавшего ядерного топлива), оборудование и предусмотренные проектом технические меры при нормальной эксплуатации должны предотвращать попадание в него воды и других водородсодержащих жидкостей.

4.12. При обосновании ядерной безопасности для одинаковых величин, на которые накладываются ограничения по ядерной безопасности, должны использоваться одинаковые размерности как в разных разделах одного документа, так и в разных документах.

4.13. При проектировании ОЯТЦ, в том числе при реализации требований обеспечения ядерной безопасности в процессе эксплуатации, при техническом обслуживании и ремонте (включая ремонт оборудования после возможных аварий, связанных с выходом ЯДМ (В,Н) из оборудования в рабочие помещения ОЯТЦ), должна быть учтена необходимость обеспечения ядерной безопасности при выводе из эксплуатации ОЯТЦ.

4.14. На этапах проектирования, конструирования оборудования, разработки технологий, сооружения зданий, изготовления и монтажа оборудования ОЯТЦ должны выполняться программы обеспечения качества работ, имеющих отношение к ядерной безопасности. Результатом реализации этих программ должно быть соответствие всех проектных решений, всех отдельных единиц оборудования и ОЯТЦ в целом требованиям обеспечения ядерной безопасности, установленным настоящими Правилами.

Эксплуатирующая организация должна проводить проверки выполнения программ обеспечения качества и выполнения требований к сертификации нового оборудования, поставляемого на ОЯТЦ.

4.15. В разрабатываемые проекты ядерных установок, пунктов хранения и транспортных упаковочных комплектов должен быть включен раздел "Обеспечение ядерной безопасности", содержащий следующие разделы:

Перечень проектной документации, включающей разделы по ядерной безопасности;

Перечень помещений, установок, хранилищ, в которых могут находиться ЯДМ (В,Н);

Описание и обоснование безопасности технологических операций по переработке, перемещению ЯДМ (В) с указанием агрегатного состояния, плотности, изотопных, нуклидных и химических составов ЯДМ (В), наличия и состава замедлителей, поглотителей и отражателей нейтронов и т.п. в объеме, необходимом для физического расчета систем;

Перечень оборудования, в которое загружается или может попасть ЯДМ (В), в том числе упаковочных комплектов, с указанием номера позиции оборудования, номера чертежа, типа оборудования (Б, ПКЗ, О), безопасных (допустимых) параметров и норм ядерной безопасности, погрешностей, с которыми измеряются нормируемые величины, способов обеспечения норм и требований ядерной безопасности, ссылок на пункты правил, Заключений по ядерной безопасности, на основании которых установлены параметры и нормы ядерной безопасности;

Описание и обоснование выбранных методов и средств контроля параметров и ограничений ядерной безопасности;

Описание средств пожаротушения;

Перечень рассмотренных исходных событий, которые могут привести к превышению безопасных (допустимых) параметров, в том числе к возникновению СЦР, результаты анализа последствий рассмотренных ситуаций (по каждой позиции оборудования);

Описание САС СЦР;

Результаты оценки последствий возникновения СЦР в оборудовании и меры по ограничению этих последствий (по каждой позиции оборудования).

5. Методы и средства контроля параметров ядерной безопасности

5.1. В проекте ОЯТЦ должны быть установлены необходимые технические средства и организационные меры по контролю следующих параметров ядерной безопасности:

Изотопного или нуклидного состава ЯДМ (В);

Массы ЯДМ (В), загружаемой в оборудование;

Концентрации, содержания ЯДМ (Н) в ЯДМ (В);

Массы ЯДМ (В), находящейся в оборудовании перед загрузкой;

Массы ЯДМ (В,Н), накапливаемой во вспомогательном оборудовании (фильтрах, коммуникациях, ловушках и т.п.);

Массовой доли замедлителя нейтронов;

Массовой влажности ЯДМ (В) (содержания водорода);

Глубины выгорания отработавшего ядерного топлива;

Концентрации гомогенных поглотителей нейтронов;

Геометрических параметров оборудования.

5.2. Средства контроля параметров ядерной безопасности должны обеспечивать проведение измерения этих параметров и, если требуется, срабатывание исполнительных механизмов и устройств (прерывателей, блокировок) до выхода значений параметров за установленные ограничения.

5.3. Средства контроля, включая автоматические и автоматизированные средства измерений, должны быть аттестованы в установленном порядке.

Автоматические и автоматизированные средства измерений должны иметь устройства проверки их работоспособности или проверяться на стабильность основных метрологических характеристик с периодичностью, определяемой технической документацией на средства измерений.

5.4. Средства непрерывного контроля параметров ядерной безопасности должны быть оснащены устройствами внешней сигнализации как о превышении пороговых значений контролируемых параметров ядерной безопасности, так и о неисправности (отказе) средств контроля.

5.5. Средства измерения параметров ядерной безопасности должны иметь такие нормируемые метрологические характеристики, чтобы значение нормы (пороговое значение величины) находилось внутри рабочего диапазона средства измерения этой величины.

5.6. При отказе средств непрерывного контроля параметров ядерной безопасности, а также исполнительных средств (блокировок, вентилей и т.п.), обеспечивающих соблюдение установленных ограничений, технологический процесс, операции должны быть остановлены либо дополнительно введены достаточные средства контроля и исполнения до восстановления работоспособности указанных средств.

6. Обеспечение ядерной безопасности при вводе в эксплуатацию, эксплуатации и выводе из эксплуатации оборудования и технологических систем объектов ядерного топливного цикла

6.1. При вводе в эксплуатацию оборудования и технологических систем ОЯТЦ должно быть подтверждено соответствие качества работ, изготовленного оборудования, технологических систем, элементов конструкций и сооружений, важных для ядерной безопасности, требованиям к обеспечению качества, установленным в проекте.

6.2. Эксплуатирующая организация должна обеспечить разработку и реализацию программы ввода в эксплуатацию оборудования и технологических систем ОЯТЦ.

Объем и последовательность предпусковых наладочных работ для всех имеющих отношение к ядерной безопасности единиц отдельного оборудования и технологических систем объекта должны быть установлены в проекте.

6.2.1. До первой загрузки оборудования ЯДМ (В) в количествах, предусмотренных регламентом эксплуатации, должны быть выполнены:

Комплексные испытания основного и вспомогательного технологического оборудования (без использования ЯДМ (В);

Испытания предусмотренных систем контроля параметров ядерной безопасности;

Испытания САС СЦР (с использованием радиоизотопных источников или генераторов излучения соответствующего типа и интенсивности);

Обучение работников ОЯТЦ выполнению всех технологических операций и операций по обслуживанию оборудования и технологических систем как при нормальной эксплуатации, так и при нарушениях нормальной эксплуатации, а также действиям при возникновении СЦР и последующая их аттестация.

Обнаруженные в ходе испытаний неисправности оборудования и технологических систем, отклонения их от установленных проектных пределов должны быть устранены.

Результаты испытаний оборудования и технологических систем и результаты проверки знаний работников должны быть оформлены документально.

6.2.2. Перед первой загрузкой оборудования ЯДМ (В) в количествах, предусмотренных регламентом эксплуатации, должна быть приведена в рабочее состояние САС СЦР.

6.3. Эксплуатирующая организация должна обеспечивать разработку технологических регламентов и документов по безопасности в соответствии с проектом и их утверждение.

6.4. Ввод в эксплуатацию отдельных установок, оборудования, аппаратов в действующих производствах проводится на основании акта проверки готовности производства. Эксплуатирующая организация ОЯТЦ или организация, выполняющая работы и предоставляющая услуги для эксплуатирующей организации по эксплуатации ОЯТЦ, информирует орган государственного управления использованием атомной энергии и орган государственного регулирования безопасности о вводе в эксплуатацию таких отдельных установок и аппаратов после ввода оборудования и в ежегодном отчете о состоянии ядерной безопасности ОЯТЦ.

6.5. В документах, регламентирующих проведение предпусковых наладочных работ, комплексного опробования технологических систем (элементов), должны быть указаны работы с ЯДМ (В), при которых возможно возникновение СЦР, и предусмотрены меры по снижению тяжести ее последствий.

6.6. При эксплуатации отклонения фактических размеров оборудования от номинальных, обусловленные допусками на изготовление оборудования, коррозию, а также отклонения, обусловленные деформацией, не должны приводить к превышению безопасных, допустимых и установленных размеров, объемов, к изменению расстояний, предусмотренных регламентом эксплуатации.

6.7. В процессе эксплуатации, технического обслуживания и ремонта оборудования и технологических систем ОЯТЦ (включая ремонт оборудования после возможных аварий, связанных с выходом ЯДМ (В,Н) из оборудования в рабочие помещения ОЯТЦ) должна накапливаться и храниться информация, необходимая для обеспечения ядерной безопасности при выводе из эксплуатации ОЯТЦ.

6.8. Перед выводом из эксплуатации ОЯТЦ (отдельного подразделения ОЯТЦ, отдельного оборудования) должна быть разработана и в установленном порядке утверждена соответствующая программа (проект) вывода из эксплуатации, включающая обоснование ядерной безопасности.

Приложение 1

Примерный перечень исходных событий, которые могут привести к самоподдерживающейся цепной ядерной реакции деления

1. Внешние события:

- сейсмические и другие явления, процессы и факторы природного и техногенного происхождения, свойственные данному региону (наводнения, ураганы, взрывы и др.) и отобранные в проектную основу в соответствии с требованиями федеральных норм и правил учета внешних воздействий;

- прекращение подачи электроэнергии (обесточивание ОЯТЦ).

2. Внутренние события:

- падение грузов при транспортировании ЯДМ (В) внутри ОЯТЦ;

- пожар внутри помещений;

- разрыв трубопроводов, повреждение калориферов и т.п.;

- аварии, приводящие к затоплению помещения водой из-за разрывов сосудов, трубопроводов и др.;

- прекращение подачи сжатого воздуха, нарушение герметичности;

- взрывы, обусловленные химическими реакциями;

- нарушения состава инертной среды;

- обесточивание отдельных ЯОУ.

3. Коррозия элементов оборудования, приводящая к утончению стенок трубопроводов и оборудования, образованию сквозных отверстий, утечке растворов, уменьшению поглощающей способности гетерогенных поглотителей нейтронов, отказу крепежных элементов и т.п., провоцирующих превращение оборудования (емкостей и аппаратов) типа Б в оборудование (емкости и аппараты) типа О,

4. Попадание растворов ЯДМ (В) в опасное оборудование (аппараты и емкости), в котором по условиям технологического процесса их не должно быть.

5. Разрушение стеллажей, подвесок, оборудования, нарушение герметичности отдельной упаковки с ЯДМ (В), нарушение порядка размещения упаковок, повреждение твэлов, ТВС, поглощающих элементов, изменение геометрических формы и размеров оборудования.

6. Изменение агрегатного состояния, других свойств ЯДМ (В) вследствие непредусмотренной подачи реагентов, сорбции, экстракции, осаждения.

7. Увеличение концентрации ЯДМ (Н) до значений, превышающих безопасную концентрацию, из-за непредусмотренного попадания экстрагента, сорбента в оборудование (емкости и аппараты).

8. Переход ЯДМ (В) из жидкого состояния в твердое (осаждение, кристаллизация).

9. Увеличение массовой влажности материала за счет непредусмотренного попадания пара, влаги в оборудование или в упаковку с ЯДМ (В) и, как следствие, увеличение замедляющей способности оборудования и (или) упаковки.

10. Ошибки работников при ведении технологического процесса и нарушения технологического регламента:

- неправильное выполнение схемы обвязки оборудования при пусконаладочных и (или) ремонтных работах;

- ошибочная коммутация вентилей;

- ошибка при отборе пробы;

- ошибки в процессе выполнения измерений и анализа пробы;

- нарушение установленной проектом периодичности зачистки, промывки и замены оборудования.

11. Изменение температуры реагентов, замедлителей нейтронов, ЯДМ (В) (вследствие пожара, выхода из строя калориферов, нагревателей, холодильников и т.п.), приводящее к изменению геометрических размеров оборудования, тепловым ударам, конденсации, кипению, замораживанию, испарению реагентов, ЯДМ (В), замедлителей нейтронов, поглотителей нейтронов и т.п.

12. Увеличение эффективности замедления нейтронов в оборудовании, содержащем ЯДМ (В), уменьшение поглощающих свойств поглотителей нейтронов.

13. Изменение плотности, пространственного распределения и нуклидного состава ЯДМ (В).

14. Переполнение оборудования (емкости, аппарата), содержащего раствор ЯДМ (В).

Приложение 2

Методы расчета характеристик и параметров ядерной безопасности

1. Нормы загрузки (комплектации), закладки, концентрации и накопления

1.1. Нормы загрузки (комплектации) М з и закладки Н з должны определяться из следующих соотношений:

(М з + ΔМ ) + (Н з + ΔН ) ≤ М б (М д) или

М з (1 + δм/100) + Н з (1 + δн/100) ≤ М б (М д),

где ΔМ и ΔН - пределы допускаемых абсолютных погрешностей измерения массы загружаемого и содержащегося в оборудовании перед загрузкой ЯДМ (В), определяемые, исходя из значения доверительной вероятности, равного 0,95, при значении М = М з и Н = Н з, а δм и δн - пределы допускаемых относительных погрешностей, определенные по формулам:

δм = 100 ΔМ /М з, %; δн = 100 ΔН /Н з, %.

При определении величин М з и Н з разрешается не учитывать ЯДМ (Н), сорбированные в конструкционных элементах аппарата.

1.2. Норма концентрации С н должна определяться из следующих соотношений:

С н + Δс ≤ С б или

С н ≤ Сб/(1 + δс/100),

где Δс - предел допускаемой абсолютной погрешности измерения концентрации при значении С = С н, определенный, исходя из значения доверительной вероятности, равного 0,95;

δс - предел допускаемой относительной погрешности, определенный по формуле:

δс = 100 Δс/С н,%.

1.3. Норма накопления Мн должна определяться из соотношений:

М н + Δ ≤ М б (М д) или

М н ≤ М б (М д) / (1 + δ/100),

где Δ - предел допускаемой абсолютной погрешности измерения накапливаемой в оборудовании массы ЯДМ (Н) при М = М н, определяемый, исходя из значения доверительной вероятности, равного 0,95;

δ - предел допускаемой относительной погрешности, определенный по формуле:

δ = 100 Δ/М н, %.

2. Пороговые значения параметров ядерной безопасности

2.1. Для обеспечения безопасной эксплуатации, помимо безопасных и допустимых параметров, устанавливаются пороговые значения соответствующих параметров ядерной безопасности.

2.2. Пороговые значения параметров ядерной безопасности (пороговые значения параметров, пороговые параметры) устанавливаются для всех контролируемых при эксплуатации параметров ядерной безопасности с целью надежного ограничения их возможных фактических (действительных) значений установленными проектом допустимыми (безопасными) значениями. Пороговые значения параметра определяются, исходя из консервативно определенных значений:

- соответствующих допустимых (безопасных) значений параметров;

- погрешностей измерения этих параметров предусмотренными в проекте инструментальными средствами контроля;

- неопределенностей фактических значении параметров, связанных с конечным временем срабатывания исполнительных механизмов систем ограничения параметров (блокировок, дозаторов, прерывателей и т.д.).

Пороговые значения параметров должны быть определены согласно пункту 2.3.

2.3. Если пороговое значение параметра X устанавливается исходя из верхнего значения параметра, равного Х п, то оно обозначается Х н и определяется из следующих соотношений:

Х н + Δх ≤ Х п или Х н ≤ Х п/(1 + δх/100),

где Δх - предел допускаемой абсолютной погрешности измерения параметра X при Х = Х н, а δх = 100 Δх/Х н.

2.4. Если пороговое значение параметра Y устанавливается исходя из нижнего значения параметра, равного Y п, то оно обозначается Y н и определяется из следующих соотношений;

Y н - Δy ≥ Y п или Y н ≥ Y п/(1 - δу/100),

где Δy - предел допускаемой абсолютной погрешности измерения параметра Y при Y = Y н, а δу = 100 Δy/Y н.

Погрешности измерения Δх и Δу должны быть определены для значения доверительной вероятности, равного 0,95.

Если величина предела допускаемой относительной погрешности измерения контролируемой величины не превышает 2%, то ее можно не учитывать при определении норм и пороговых значений.